360 research outputs found

    Observability of Path Loss Parameters in WLAN-Based Simultaneous Localization and Mapping

    Get PDF
    Indoor positioning by means of received signal strengths has been gathering much interest since the massive presence of wireless local area networks (WLANs) in buildings. Theoretical approaches rely on the perfect knowledge of the APs' positions and propagation conditions; since this is unrealistic in real world, we estimate such knowledge as well as the building map from data by applying Simultaneous Localization and Mapping (SLAM). In this paper we address the joint estimation of the path loss parameters, namely the transmitted power and the path loss exponent, this latter being usually approximated in the literature by the free space value. We provide examples that show the relevance of estimating both parameters and analyze observability issues from the point of view of estimation theory. The integration of the parameter estimation in a WLAN based SLAM algorithm - WiSLAM - has been carried out and the results are discussed

    Map matching by using inertial sensors: literature review

    Get PDF
    This literature review aims to clarify what is known about map matching by using inertial sensors and what are the requirements for map matching, inertial sensors, placement and possible complementary position technology. The target is to develop a wearable location system that can position itself within a complex construction environment automatically with the aid of an accurate building model. The wearable location system should work on a tablet computer which is running an augmented reality (AR) solution and is capable of track and visualize 3D-CAD models in real environment. The wearable location system is needed to support the system in initialization of the accurate camera pose calculation and automatically finding the right location in the 3D-CAD model. One type of sensor which does seem applicable to people tracking is inertial measurement unit (IMU). The IMU sensors in aerospace applications, based on laser based gyroscopes, are big but provide a very accurate position estimation with a limited drift. Small and light units such as those based on Micro-Electro-Mechanical (MEMS) sensors are becoming very popular, but they have a significant bias and therefore suffer from large drifts and require method for calibration like map matching. The system requires very little fixed infrastructure, the monetary cost is proportional to the number of users, rather than to the coverage area as is the case for traditional absolute indoor location systems.Siirretty Doriast

    Evaluating indoor positioning systems in a shopping mall : the lessons learned from the IPIN 2018 competition

    Get PDF
    The Indoor Positioning and Indoor Navigation (IPIN) conference holds an annual competition in which indoor localization systems from different research groups worldwide are evaluated empirically. The objective of this competition is to establish a systematic evaluation methodology with rigorous metrics both for real-time (on-site) and post-processing (off-site) situations, in a realistic environment unfamiliar to the prototype developers. For the IPIN 2018 conference, this competition was held on September 22nd, 2018, in Atlantis, a large shopping mall in Nantes (France). Four competition tracks (two on-site and two off-site) were designed. They consisted of several 1 km routes traversing several floors of the mall. Along these paths, 180 points were topographically surveyed with a 10 cm accuracy, to serve as ground truth landmarks, combining theodolite measurements, differential global navigation satellite system (GNSS) and 3D scanner systems. 34 teams effectively competed. The accuracy score corresponds to the third quartile (75th percentile) of an error metric that combines the horizontal positioning error and the floor detection. The best results for the on-site tracks showed an accuracy score of 11.70 m (Track 1) and 5.50 m (Track 2), while the best results for the off-site tracks showed an accuracy score of 0.90 m (Track 3) and 1.30 m (Track 4). These results showed that it is possible to obtain high accuracy indoor positioning solutions in large, realistic environments using wearable light-weight sensors without deploying any beacon. This paper describes the organization work of the tracks, analyzes the methodology used to quantify the results, reviews the lessons learned from the competition and discusses its future

    WLAN-paikannuksen elinkaaren tukeminen

    Get PDF
    The advent of GPS positioning at the turn of the millennium provided consumers with worldwide access to outdoor location information. For the purposes of indoor positioning, however, the GPS signal rarely penetrates buildings well enough to maintain the same level of positioning granularity as outdoors. Arriving around the same time, wireless local area networks (WLAN) have gained widespread support both in terms of infrastructure deployments and client proliferation. A promising approach to bridge the location context then has been positioning based on WLAN signals. In addition to being readily available in most environments needing support for location information, the adoption of a WLAN positioning system is financially low-cost compared to dedicated infrastructure approaches, partly due to operating on an unlicensed frequency band. Furthermore, the accuracy provided by this approach is enough for a wide range of location-based services, such as navigation and location-aware advertisements. In spite of this attractive proposition and extensive research in both academia and industry, WLAN positioning has yet to become the de facto choice for indoor positioning. This is despite over 20 000 publications and the foundation of several companies. The main reasons for this include: (i) the cost of deployment, and re-deployment, which is often significant, if not prohibitive, in terms of work hours; (ii) the complex propagation of the wireless signal, which -- through interaction with the environment -- renders it inherently stochastic; (iii) the use of an unlicensed frequency band, which means the wireless medium faces fierce competition by other technologies, and even unintentional radiators, that can impair traffic in unforeseen ways and impact positioning accuracy. This thesis addresses these issues by developing novel solutions for reducing the effort of deployment, including optimizing the indoor location topology for the use of WLAN positioning, as well as automatically detecting sources of cross-technology interference. These contributions pave the way for WLAN positioning to become as ubiquitous as the underlying technology.GPS-paikannus avattiin julkiseen käyttöön vuosituhannen vaihteessa, jonka jälkeen sitä on voinut käyttää sijainnin paikantamiseen ulkotiloissa kaikkialla maailmassa. Sisätiloissa GPS-signaali kuitenkin harvoin läpäisee rakennuksia kyllin hyvin voidakseen tarjota vastaavaa paikannustarkkuutta. Langattomat lähiverkot (WLAN), mukaan lukien tukiasemat ja käyttölaitteet, yleistyivät nopeasti samoihin aikoihin. Näiden verkkojen signaalien käyttö on siksi alusta asti tarjonnut lupaavia mahdollisuuksia sisätilapaikannukseen. Useimmissa ympäristöissä on jo valmiit WLAN-verkot, joten paikannuksen käyttöönotto on edullista verrattuna järjestelmiin, jotka vaativat erillisen laitteiston. Tämä johtuu osittain lisenssivapaasta taajuusalueesta, joka mahdollistaa kohtuuhintaiset päätelaitteet. WLAN-paikannuksen tarjoama tarkkuus on lisäksi riittävä monille sijaintipohjaisille palveluille, kuten suunnistamiselle ja paikkatietoisille mainoksille. Näistä lupaavista alkuasetelmista ja laajasta tutkimuksesta huolimatta WLAN-paikannus ei ole kuitenkaan pystynyt lunastamaan paikkaansa pääasiallisena sisätilapaikannusmenetelmänä. Vaivannäöstä ei ole puutetta; vuosien saatossa on julkaistu yli 20 000 tieteellistä artikkelia sekä perustettu useita yrityksiä. Syitä tähän kehitykseen on useita. Ensinnäkin, paikannuksen pystyttäminen ja ylläpito vaativat aikaa ja vaivaa. Toiseksi, langattoman signaalin eteneminen ja vuorovaikutus ympäristön kanssa on hyvin monimutkaista, mikä tekee mallintamisesta vaikeaa. Kolmanneksi, eri teknologiat ja laitteet kilpailevat lisenssivapaan taajuusalueen käytöstä, mikä johtaa satunnaisiin paikannustarkkuuteen vaikuttaviin tietoliikennehäiriöihin. Väitöskirja esittelee uusia menetelmiä joilla voidaan merkittävästi pienentää paikannusjärjestelmän asennuskustannuksia, jakaa ympäristö automaattisesti osiin WLAN-paikannusta varten, sekä tunnistaa mahdolliset langattomat häiriölähteet. Nämä kehitysaskeleet edesauttavat WLAN-paikannuksen yleistymistä jokapäiväiseen käyttöön

    Recent Advances in Indoor Localization Systems and Technologies

    Get PDF
    Despite the enormous technical progress seen in the past few years, the maturity of indoor localization technologies has not yet reached the level of GNSS solutions. The 23 selected papers in this book present the recent advances and new developments in indoor localization systems and technologies, propose novel or improved methods with increased performance, provide insight into various aspects of quality control, and also introduce some unorthodox positioning methods

    Novel Methods for Personal Indoor Positioning

    Get PDF
    Currently, people are used to getting accurate GNSS based positioning services. However, in indoor environments, the GNSS cannot provide the accuracy and availability comparable to open outdoor environments. Therefore, alternatives to GNSS are needed for indoor positioning. In this thesis, methods for pedestrian indoor positioning are proposed. With these novel methods, the mobile unit performs all the required positioning measurements and no dedicated positioning infrastructure is required.This thesis proposes novel radio map configuration methods for WLAN fingerprinting based on received signal strength measurements. These methods with different model parameters were studied in field tests to identify the best models with reasonable positioning accuracy and moderate memory requirements. A histogram based WLAN fingerprinting model is proposed to aid IMU based pedestrian dead reckoning that is obtained using a gyro and a 3-axis accelerometer, both based on MEMS technology. The sensor data is used to detect the steps taken by a person on foot and to estimate the step length and the heading change during each step.For the aiding of the PDR with WLAN positioning, this thesis proposes two different configurations of complementary extended Kalman filters. The field tests show that these configurations produce equivalent position estimates. Two particle filters are proposed to implement the map aided PDR: one filter uses only the PDR and map information, while the other uses also the WLAN positioning. Based on the field tests, map aiding improves the positioning accuracy more than WLAN positioning.Novel map checking algorithms based on the sequential re-selection of obstacle lines are proposed to decrease the computation time required by the indoor map matching. To present the map information, both unstructured and structured obstacle maps are used. The feasibility of the proposed particle filter algorithms to real time navigation were demonstrated in field tests

    A Meta-Review of Indoor Positioning Systems

    Get PDF
    An accurate and reliable Indoor Positioning System (IPS) applicable to most indoor scenarios has been sought for many years. The number of technologies, techniques, and approaches in general used in IPS proposals is remarkable. Such diversity, coupled with the lack of strict and verifiable evaluations, leads to difficulties for appreciating the true value of most proposals. This paper provides a meta-review that performed a comprehensive compilation of 62 survey papers in the area of indoor positioning. The paper provides the reader with an introduction to IPS and the different technologies, techniques, and some methods commonly employed. The introduction is supported by consensus found in the selected surveys and referenced using them. Thus, the meta-review allows the reader to inspect the IPS current state at a glance and serve as a guide for the reader to easily find further details on each technology used in IPS. The analyses of the meta-review contributed with insights on the abundance and academic significance of published IPS proposals using the criterion of the number of citations. Moreover, 75 works are identified as relevant works in the research topic from a selection of about 4000 works cited in the analyzed surveys

    A Survey of Positioning Systems Using Visible LED Lights

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.As Global Positioning System (GPS) cannot provide satisfying performance in indoor environments, indoor positioning technology, which utilizes indoor wireless signals instead of GPS signals, has grown rapidly in recent years. Meanwhile, visible light communication (VLC) using light devices such as light emitting diodes (LEDs) has been deemed to be a promising candidate in the heterogeneous wireless networks that may collaborate with radio frequencies (RF) wireless networks. In particular, light-fidelity has a great potential for deployment in future indoor environments because of its high throughput and security advantages. This paper provides a comprehensive study of a novel positioning technology based on visible white LED lights, which has attracted much attention from both academia and industry. The essential characteristics and principles of this system are deeply discussed, and relevant positioning algorithms and designs are classified and elaborated. This paper undertakes a thorough investigation into current LED-based indoor positioning systems and compares their performance through many aspects, such as test environment, accuracy, and cost. It presents indoor hybrid positioning systems among VLC and other systems (e.g., inertial sensors and RF systems). We also review and classify outdoor VLC positioning applications for the first time. Finally, this paper surveys major advances as well as open issues, challenges, and future research directions in VLC positioning systems.Peer reviewe
    corecore