17,866 research outputs found

    A Linear Programming Approach to Routing Control in Networks of Constrained Nonlinear Positive Systems with Concave Flow Rates

    Get PDF
    We consider control design for positive compartmental systems in which each compartment's outflow rate is described by a concave function of the amount of material in the compartment.We address the problem of determining the routing of material between compartments to satisfy time-varying state constraints while ensuring that material reaches its intended destination over a finite time horizon. We give sufficient conditions for the existence of a time-varying state-dependent routing strategy which ensures that the closed-loop system satisfies basic network properties of positivity, conservation and interconnection while ensuring that capacity constraints are satisfied, when possible, or adjusted if a solution cannot be found. These conditions are formulated as a linear programming problem. Instances of this linear programming problem can be solved iteratively to generate a solution to the finite horizon routing problem. Results are given for the application of this control design method to an example problem. Key words: linear programming; control of networks; positive systems; controller constraints and structure

    GIS and Network Analysis

    Get PDF
    Both geographic information systems (GIS) and network analysis are burgeoning fields, characterised by rapid methodological and scientific advances in recent years. A geographic information system (GIS) is a digital computer application designed for the capture, storage, manipulation, analysis and display of geographic information. Geographic location is the element that distinguishes geographic information from all other types of information. Without location, data are termed to be non-spatial and would have little value within a GIS. Location is, thus, the basis for many benefits of GIS: the ability to map, the ability to measure distances and the ability to tie different kinds of information together because they refer to the same place (Longley et al., 2001). GIS-T, the application of geographic information science and systems to transportation problems, represents one of the most important application areas of GIS-technology today. While traditional GIS formulation's strengths are in mapping display and geodata processing, GIS-T requires new data structures to represent the complexities of transportation networks and to perform different network algorithms in order to fulfil its potential in the field of logistics and distribution logistics. This paper addresses these issues as follows. The section that follows discusses data models and design issues which are specifically oriented to GIS-T, and identifies several improvements of the traditional network data model that are needed to support advanced network analysis in a ground transportation context. These improvements include turn-tables, dynamic segmentation, linear referencing, traffic lines and non-planar networks. Most commercial GIS software vendors have extended their basic GIS data model during the past two decades to incorporate these innovations (Goodchild, 1998). The third section shifts attention to network routing problems that have become prominent in GIS-T: the travelling salesman problem, the vehicle routing problem and the shortest path problem with time windows, a problem that occurs as a subproblem in many time constrained routing and scheduling issues of practical importance. Such problems are conceptually simple, but mathematically complex and challenging. The focus is on theory and algorithms for solving these problems. The paper concludes with some final remarks.

    Certainty Closure: Reliable Constraint Reasoning with Incomplete or Erroneous Data

    Full text link
    Constraint Programming (CP) has proved an effective paradigm to model and solve difficult combinatorial satisfaction and optimisation problems from disparate domains. Many such problems arising from the commercial world are permeated by data uncertainty. Existing CP approaches that accommodate uncertainty are less suited to uncertainty arising due to incomplete and erroneous data, because they do not build reliable models and solutions guaranteed to address the user's genuine problem as she perceives it. Other fields such as reliable computation offer combinations of models and associated methods to handle these types of uncertain data, but lack an expressive framework characterising the resolution methodology independently of the model. We present a unifying framework that extends the CP formalism in both model and solutions, to tackle ill-defined combinatorial problems with incomplete or erroneous data. The certainty closure framework brings together modelling and solving methodologies from different fields into the CP paradigm to provide reliable and efficient approches for uncertain constraint problems. We demonstrate the applicability of the framework on a case study in network diagnosis. We define resolution forms that give generic templates, and their associated operational semantics, to derive practical solution methods for reliable solutions.Comment: Revised versio

    SCOR: Software-defined Constrained Optimal Routing Platform for SDN

    Full text link
    A Software-defined Constrained Optimal Routing (SCOR) platform is introduced as a Northbound interface in SDN architecture. It is based on constraint programming techniques and is implemented in MiniZinc modelling language. Using constraint programming techniques in this Northbound interface has created an efficient tool for implementing complex Quality of Service routing applications in a few lines of code. The code includes only the problem statement and the solution is found by a general solver program. A routing framework is introduced based on SDN's architecture model which uses SCOR as its Northbound interface and an upper layer of applications implemented in SCOR. Performance of a few implemented routing applications are evaluated in different network topologies, network sizes and various number of concurrent flows.Comment: 19 pages, 11 figures, 11 algorithms, 3 table

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs
    • …
    corecore