8,270 research outputs found

    A memetic algorithm for cardinality-constrained portfolio optimization with transaction costs

    Full text link
    This is the author’s version of a work that was accepted for publication in Applied Soft Computing. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Applied Soft Computing, Vol 36 (2015) DOI 10.1016/j.asoc.2015.06.053A memetic approach that combines a genetic algorithm (GA) and quadratic programming is used to address the problem of optimal portfolio selection with cardinality constraints and piecewise linear transaction costs. The framework used is an extension of the standard Markowitz mean–variance model that incorporates realistic constraints, such as upper and lower bounds for investment in individual assets and/or groups of assets, and minimum trading restrictions. The inclusion of constraints that limit the number of assets in the final portfolio and piecewise linear transaction costs transforms the selection of optimal portfolios into a mixed-integer quadratic problem, which cannot be solved by standard optimization techniques. We propose to use a genetic algorithm in which the candidate portfolios are encoded using a set representation to handle the combinatorial aspect of the optimization problem. Besides specifying which assets are included in the portfolio, this representation includes attributes that encode the trading operation (sell/hold/buy) performed when the portfolio is rebalanced. The results of this hybrid method are benchmarked against a range of investment strategies (passive management, the equally weighted portfolio, the minimum variance portfolio, optimal portfolios without cardinality constraints, ignoring transaction costs or obtained with L1 regularization) using publicly available data. The transaction costs and the cardinality constraints provide regularization mechanisms that generally improve the out-of-sample performance of the selected portfolios

    Portfolio selection problems in practice: a comparison between linear and quadratic optimization models

    Full text link
    Several portfolio selection models take into account practical limitations on the number of assets to include and on their weights in the portfolio. We present here a study of the Limited Asset Markowitz (LAM), of the Limited Asset Mean Absolute Deviation (LAMAD) and of the Limited Asset Conditional Value-at-Risk (LACVaR) models, where the assets are limited with the introduction of quantity and cardinality constraints. We propose a completely new approach for solving the LAM model, based on reformulation as a Standard Quadratic Program and on some recent theoretical results. With this approach we obtain optimal solutions both for some well-known financial data sets used by several other authors, and for some unsolved large size portfolio problems. We also test our method on five new data sets involving real-world capital market indices from major stock markets. Our computational experience shows that, rather unexpectedly, it is easier to solve the quadratic LAM model with our algorithm, than to solve the linear LACVaR and LAMAD models with CPLEX, one of the best commercial codes for mixed integer linear programming (MILP) problems. Finally, on the new data sets we have also compared, using out-of-sample analysis, the performance of the portfolios obtained by the Limited Asset models with the performance provided by the unconstrained models and with that of the official capital market indices

    Combining Alpha Streams with Costs

    Full text link
    We discuss investment allocation to multiple alpha streams traded on the same execution platform with internal crossing of trades and point out differences with allocating investment when alpha streams are traded on separate execution platforms with no crossing. First, in the latter case allocation weights are non-negative, while in the former case they can be negative. Second, the effects of both linear and nonlinear (impact) costs are different in these two cases due to turnover reduction when the trades are crossed. Third, the turnover reduction depends on the universe of traded alpha streams, so if some alpha streams have zero allocations, turnover reduction needs to be recomputed, hence an iterative procedure. We discuss an algorithm for finding allocation weights with crossing and linear costs. We also discuss a simple approximation when nonlinear costs are added, making the allocation problem tractable while still capturing nonlinear portfolio capacity bound effects. We also define "regression with costs" as a limit of optimization with costs, useful in often-occurring cases with singular alpha covariance matrix.Comment: 21 pages; minor misprints corrected; to appear in The Journal of Ris

    A Unified Approach to Portfolio Optimization with Linear Transaction Costs

    Get PDF
    In this paper we study the continuous time optimal portfolio selection problem for an investor with a finite horizon who maximizes expected utility of terminal wealth and faces transaction costs in the capital market. It is well known that, depending on a particular structure of transaction costs, such a problem is formulated and solved within either stochastic singular control or stochastic impulse control framework. In this paper we propose a unified framework, which generalizes the contemporary approaches and is capable to deal with any problem where transaction costs are a linear/piecewise-linear function of the volume of trade. We also discuss some methods for solving numerically the problem within our unified framework.portfolio choice, transaction costs, stochastic singular control, stochastic impulse control, computational methods

    Multi-Period Trading via Convex Optimization

    Full text link
    We consider a basic model of multi-period trading, which can be used to evaluate the performance of a trading strategy. We describe a framework for single-period optimization, where the trades in each period are found by solving a convex optimization problem that trades off expected return, risk, transaction cost and holding cost such as the borrowing cost for shorting assets. We then describe a multi-period version of the trading method, where optimization is used to plan a sequence of trades, with only the first one executed, using estimates of future quantities that are unknown when the trades are chosen. The single-period method traces back to Markowitz; the multi-period methods trace back to model predictive control. Our contribution is to describe the single-period and multi-period methods in one simple framework, giving a clear description of the development and the approximations made. In this paper we do not address a critical component in a trading algorithm, the predictions or forecasts of future quantities. The methods we describe in this paper can be thought of as good ways to exploit predictions, no matter how they are made. We have also developed a companion open-source software library that implements many of the ideas and methods described in the paper
    • …
    corecore