55 research outputs found

    ํ†ต๊ณ„์  ์ฃผํŒŒ์ˆ˜ ๊ฒ€์ถœ๊ธฐ ๊ธฐ๋ฐ˜ ๊ธฐ์ค€ ์ฃผํŒŒ์ˆ˜๋ฅผ ์‚ฌ์šฉํ•˜์ง€ ์•Š๋Š” ํด๋ก ๋ฐ ๋ฐ์ดํ„ฐ ๋ณต์› ํšŒ๋กœ์˜ ์„ค๊ณ„ ๋ฐฉ๋ฒ•๋ก 

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2022. 8. ์ •๋•๊ท .In this thesis, a design of a high-speed, power-efficient, wide-range clock and data recovery (CDR) without a reference clock is proposed. A frequency acquisition scheme using a stochastic frequency detector (SFD) based on the Alexander phase detector (PD) is utilized for the referenceless operation. Pat-tern histogram analysis is presented to analyze the frequency acquisition behavior of the SFD and verified by simulation. Based on the information obtained by pattern histogram analysis, SFD using autocovariance is proposed. With a direct-proportional path and a digital integral path, the proposed referenceless CDR achieves frequency lock at all measurable conditions, and the measured frequency acquisition time is within 7ฮผs. The prototype chip has been fabricated in a 40-nm CMOS process and occupies an active area of 0.032 mm2. The proposed referenceless CDR achieves the BER of less than 10-12 at 32 Gb/s and exhibits an energy efficiency of 1.15 pJ/b at 32 Gb/s with a 1.0 V supply.๋ณธ ๋…ผ๋ฌธ์€ ๊ธฐ์ค€ ํด๋Ÿญ์ด ์—†๋Š” ๊ณ ์†, ์ €์ „๋ ฅ, ๊ด‘๋Œ€์—ญ์œผ๋กœ ๋™์ž‘ํ•˜๋Š” ํด๋Ÿญ ๋ฐ ๋ฐ์ดํ„ฐ ๋ณต์›ํšŒ๋กœ์˜ ์„ค๊ณ„๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ๊ธฐ์ค€ ํด๋Ÿญ์ด ์—†๋Š” ๋™์ž‘์„ ์œ„ํ•ด์„œ ์•Œ๋ ‰์‚ฐ๋” ์œ„์ƒ ๊ฒ€์ถœ๊ธฐ์— ๊ธฐ๋ฐ˜ํ•œ ํ†ต๊ณ„์  ์ฃผํŒŒ์ˆ˜ ๊ฒ€์ถœ๊ธฐ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ์ฃผํŒŒ์ˆ˜ ํš๋“ ๋ฐฉ์‹์ด ์‚ฌ์šฉ๋œ๋‹ค. ํ†ต๊ณ„์  ์ฃผํŒŒ์ˆ˜ ๊ฒ€์ถœ๊ธฐ์˜ ์ฃผํŒŒ์ˆ˜ ์ถ”์  ์–‘์ƒ์„ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•ด ํŒจํ„ด ํžˆ์Šคํ† ๊ทธ๋žจ ๋ถ„์„ ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•˜์˜€๊ณ  ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•ด ๊ฒ€์ฆํ•˜์˜€๋‹ค. ํŒจํ„ด ํžˆ์Šคํ† ๊ทธ๋žจ ๋ถ„์„์„ ํ†ตํ•ด ์–ป์€ ์ •๋ณด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์ž๊ธฐ๊ณต๋ถ„์‚ฐ์„ ์ด์šฉํ•œ ํ†ต๊ณ„์  ์ฃผํŒŒ์ˆ˜ ๊ฒ€์ถœ๊ธฐ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ง์ ‘ ๋น„๋ก€ ๊ฒฝ๋กœ์™€ ๋””์ง€ํ„ธ ์ ๋ถ„ ๊ฒฝ๋กœ๋ฅผ ํ†ตํ•ด ์ œ์•ˆ๋œ ๊ธฐ์ค€ ํด๋Ÿญ์ด ์—†๋Š” ํด๋Ÿญ ๋ฐ ๋ฐ์ดํ„ฐ ๋ณต์›ํšŒ๋กœ๋Š” ๋ชจ๋“  ์ธก์ • ๊ฐ€๋Šฅํ•œ ์กฐ๊ฑด์—์„œ ์ฃผํŒŒ์ˆ˜ ์ž ๊ธˆ์„ ๋‹ฌ์„ฑํ•˜๋Š” ๋ฐ ์„ฑ๊ณตํ•˜์˜€๊ณ , ๋ชจ๋“  ๊ฒฝ์šฐ์—์„œ ์ธก์ •๋œ ์ฃผํŒŒ์ˆ˜ ์ถ”์  ์‹œ๊ฐ„์€ 7ฮผs ์ด๋‚ด์ด๋‹ค. 40-nm CMOS ๊ณต์ •์„ ์ด์šฉํ•˜์—ฌ ๋งŒ๋“ค์–ด์ง„ ์นฉ์€ 0.032 mm2์˜ ๋ฉด์ ์„ ์ฐจ์ง€ํ•œ๋‹ค. ์ œ์•ˆํ•˜๋Š” ํด๋Ÿญ ๋ฐ ๋ฐ์ดํ„ฐ ๋ณต์›ํšŒ๋กœ๋Š” 32 Gb/s์˜ ์†๋„์—์„œ ๋น„ํŠธ์—๋Ÿฌ์œจ 10-12 ์ดํ•˜๋กœ ๋™์ž‘ํ•˜์˜€๊ณ , ์—๋„ˆ์ง€ ํšจ์œจ์€ 32Gb/s์˜ ์†๋„์—์„œ 1.0V ๊ณต๊ธ‰์ „์••์„ ์‚ฌ์šฉํ•˜์—ฌ 1.15 pJ/b์„ ๋‹ฌ์„ฑํ•˜์˜€๋‹ค.CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.2 THESIS ORGANIZATION 13 CHAPTER 2 BACKGROUNDS 14 2.1 CLOCKING ARCHITECTURES IN SERIAL LINK INTERFACE 14 2.2 GENERAL CONSIDERATIONS FOR CLOCK AND DATA RECOVERY 24 2.2.1 OVERVIEW 24 2.2.2 JITTER 26 2.2.3 CDR JITTER CHARACTERISTICS 33 2.3 CDR ARCHITECTURES 39 2.3.1 PLL-BASED CDR โ€“ WITH EXTERNAL REFERENCE CLOCK 39 2.3.2 DLL/PI-BASED CDR 44 2.3.3 PLL-BASED CDR โ€“ WITHOUT EXTERNAL REFERENCE CLOCK 47 2.4 FREQUENCY ACQUISITION SCHEME 50 2.4.1 TYPICAL FREQUENCY DETECTORS 50 2.4.1.1 DIGITAL QUADRICORRELATOR FREQUENCY DETECTOR 50 2.4.1.2 ROTATIONAL FREQUENCY DETECTOR 54 2.4.2 PRIOR WORKS 56 CHAPTER 3 DESIGN OF THE REFERENCELESS CDR USING SFD 58 3.1 OVERVIEW 58 3.2 PROPOSED FREQUENCY DETECTOR 62 3.2.1 MOTIVATION 62 3.2.2 PATTERN HISTOGRAM ANALYSIS 68 3.2.3 INTRODUCTION OF AUTOCOVARIANCE TO STOCHASTIC FREQUENCY DETECTOR 75 3.3 CIRCUIT IMPLEMENTATION 83 3.3.1 IMPLEMENTATION OF THE PROPOSED REFERENCELESS CDR 83 3.3.2 CONTINUOUS-TIME LINEAR EQUALIZER (CTLE) 85 3.3.3 DIGITALLY-CONTROLLED OSCILLATOR (DCO) 87 3.4 MEASUREMENT RESULTS 89 CHAPTER 4 CONCLUSION 99 APPENDIX A DETAILED FREQUENCY ACQUISITION WAVEFORMS OF THE PROPOSED SFD 100 BIBLIOGRAPHY 108 ์ดˆ ๋ก 122๋ฐ•

    Design and realization of a 2.4 Gbps - 3.2 Gbps clock and data recovery circuit

    Get PDF
    This thesis presents the design, verification, system integration and the physical realization of a high-speed monolithic phase-locked loop (PLL) based clock and data recovery (CDR) circuit. The architecture of the CDR has been realized as a two-loop structure consisting of coarse and fine loops, each of which is capable of processing the incoming low-speed reference clock and high-speed random data. At start up, the coarse loop provides fast locking to the system frequency with the help of the reference clock. After the VCO clock reaches a proximity of system frequency , the LOCK signal is generated and the coarse loop is tumed off, while the fine loop is tumed on. Fine loop tracks the phase of the generated clock with respect to the data and aligns the VCO clock such that its rising edge is in the middle of data eye. The speed and symmetry of sub-blocks in fine loop are extremely important, since all asymmetric charging effects, skew and setup/hold problems in this loop translate into a static phase error at the clock output. The entire circuit architecture is built with a special low-voltage circuit design technique. All analogue as well as digital sub-blocks of the CDR architecture presented in this work operate on a differential signalling, which significantly makes the design more complex while ensuring a more robust perforrnance. Other important features of this CDR include small area, single power supply, low power consumption, capability to operate at very high data rates, and the ability to handle between 2.4 Gbps and 3.2 Gbps data rate. The CDR architecture was realized using a conventional 0.13-mikrometer digital CMOS technology (Foundry: UMC), which ensures a lower overall cost and better portability for the design. The CDR architecture presented in this work is capable of operating at sampling frequencies of up to 3.2 GHz, and still can achieve the robust phase alignrnent. The entire circuit is designed with single 1.2 V power supply .The overall power consumption is estimated as 18.6 mW at 3.2 GHz sampling rate. The overall silicon area of the CDR is approximately 0.3 mm^2 with its internal loop filter capacitors. Other researchers have reported similar featured PLL-based clock and data recovery circuits in terms of operating data rate, architecture and jitter performance. To the best of our knowledge, this clock recovery uses the advantage of being the first high-speed CDR designed in CMOS 0.13 mikrometer technology with the superiority on power consumption and area considerations among others. The CDR architecture presented in this thesis is intended, as a state-of-the-art clock recovery for high-speed applications such as optical communications or high bandwidth serial wireline communication needs. It can be used either as a stand-alone single-chip unit, or as an embedded intellectual property (IP) block that can be integrated with other modules on chip

    Design of CMOS integrated phase-locked loops for multi-gigabits serial data links

    Get PDF
    High-speed serial data links are quickly gaining in popularity and replacing the conventional parallel data links in recent years when the data rate of communication exceeds one gigabits per second. Compared with parallel data links, serial data links are able to achieve higher data rate and longer transfer distance. This dissertation is focused on the design of CMOS integrated phase-locked loops (PLLs) and relevant building blocks used in multi-gigabits serial data link transceivers. Firstly, binary phase-locked loops (BPLLs, i.e., PLLs based on binary phase detectors) are modeled and analyzed. The steady-state behavior of BPLLs is derived with combined discrete-time and continuous-time analysis. The jitter performance characteristics of BPLLs are analyzed. Secondly, a 10 Gbps clock and data recovery (CDR) chip for SONET OC- 192, the mainstream standard for optical serial data links, is presented. The CDR is based on a novel referenceless dual-loop half-rate architecture. It includes a binary phase-locked loop based on a quad-level phase detector and a linear frequency-locked loop based on a linear frequency detector. The proposed architecture enables the CDR to achieve large locking range and small jitter generation at the same time. The prototype is implemented in 0.18 รƒร‚ยผm CMOS technology and consumes 250 mW under 1.8 V supply. The jitter generation is 0.5 ps-rms and 4.8 ps-pp. The jitter peaking and jitter tolerance performance exceeds the specifications defined by SONET OC-192 standard. Thirdly, a fully-differential divide-by-eight injection-locked frequency divider with low power dissipation is presented. The frequency divider consists of a four-stage ring of CML (current mode logic) latches. It has a maximum operating frequency of 18 GHz. The ratio of locking range over center frequency is up to 50%. The prototype chip is implemented in 0.18 รƒร‚ยผm CMOS technology and consumes 3.6 mW under 1.8 V supply. Lastly, the design and optimization techniques of fully differential charge pumps are discussed. Techniques are proposed to minimize the nonidealities associated with a fully differential charge pump, including differential mismatch, output current variation, low-speed glitches and high-speed glitches. The performance improvement brought by the techniques is verified with simulations of schematics designed in 0.35 รƒร‚ยผm CMOS technology

    Design of High-Speed SerDes Transceiver for Chip-to-Chip Communications in CMOS Process

    Get PDF
    With the continuous increase of on-chip computation capacities and exponential growth of data-intensive applications, the high-speed data transmission through serial links has become the backbone for modern communication systems. To satisfy the massive data-exchanging requirement, the data rate of such serial links has been updated from several Gb/s to tens of Gb/s. Currently, the commercial standards such as Ethernet 400GbE, InfiniBand high data rate (HDR), and common electrical interface (CEI)-56G has been developing towards 40+ Gb/s. As the core component within these links, the transceiver chipset plays a fundamental role in balancing the operation speed, power consumption, area occupation, and operation range. Meanwhile, the CMOS process has become the dominant technology in modern transceiver chip fabrications due to its large-scale digital integration capability and aggressive pricing advantage. This research aims to explore advanced techniques that are capable of exploiting the maximum operation speed of the CMOS process, and hence provides potential solutions for 40+ Gb/s CMOS transceiver designs. The major contributions are summarized as follows. A low jitter ring-oscillator-based injection-locked clock multiplier (RILCM) with a hybrid frequency tracking loop that consists of a traditional phase-locked loop (PLL), a timing-adjusted loop, and a loop selection state-machine is implemented in 65-nm C-MOS process. In the ring voltage-controlled oscillator, a full-swing pseudo-differential delay cell is proposed to lower the device noise to phase noise conversion. To obtain high operation speed and high detection accuracy, a compact timing-adjusted phase detector tightly combined with a well-matched charge pump is designed. Meanwhile, a lock-loss detection and lock recovery is devised to endow the RILCM with a similar lock-acquisition ability as conventional PLL, thus excluding the initial frequency set- I up aid and preventing the potential lock-loss risk. The experimental results show that the figure-of-merit of the designed RILCM reaches -247.3 dB, which is better than previous RILCMs and even comparable to the large-area LC-ILCMs. The transmitter (TX) and receiver (RX) chips are separately designed and fab- ricated in 65-nm CMOS process. The transmitter chip employs a quarter-rate multi-multiplexer (MUX)-based 4-tap feed-forward equalizer (FFE) to pre-distort the output. To increase the maximum operating speed, a bandwidth-enhanced 4:1 MUX with the capability of eliminating charge-sharing effect is proposed. To produce the quarter-rate parallel data streams with appropriate delays, a compact latch array associated with an interleaved-retiming technique is designed. The receiver chip employs a two-stage continuous-time linear equalizer (CTLE) as the analog front-end and integrates an improved clock data recovery to extract the sampling clocks and retime the incoming data. To automatically balance the jitter tracking and jitter suppression, passive low-pass filters with adaptively-adjusted bandwidth are introduced into the data-sampling path. To optimize the linearity of the phase interpolation, a time-averaging-based compensating phase interpolator is proposed. For equalization, a combined TX-FFE and RX-CTLE is applied to compensate for the channel loss, where a low-cost edge-data correlation-based sign zero-forcing adaptation algorithm is proposed to automatically adjust the TX-FFEโ€™s tap weights. Measurement results show that the fabricated transmitter/receiver chipset can deliver 40 Gb/s random data at a bit error rate of 16 dB loss at the half-baud frequency, while consuming a total power of 370 mW

    Analysis and Design of Robust Multi-Gb/s Clock and Data Recovery Circuits

    Get PDF
    The bandwidth demands of modern computing systems have been continually increasing and the recent focus on parallel processing will only increase the demands placed on data communication circuits. As data rates enter the multi-Gb/s range, serial data communication architectures become attractive as compared to parallel architectures. Serial architectures have long been used in fibre optic systems for long-haul applications, however, in the past decade there has been a trend towards multi-Gb/s backplane interconnects. The integration of clock and data recovery (CDR) circuits into monolithic integrated circuits (ICs) is attractive as it improves performance and reduces the system cost, however it also introduces new challenges, one of which is robustness. In serial data communication systems the CDR circuit is responsible for recovering the data from an incoming data stream. In recent years there has been a great deal of research into integrating CDR circuits into monolithic ICs. Most research has focused on increasing the bandwidth of the circuits, however in order to integrate multi-Gb/s CDR circuits robustness, as well as performance, must be considered. In this thesis CDR circuits are analyzed with respect to their robustness. The phase detector is a critical block in a CDR circuit and its robustness will play a significant role in determining the overall performance in the presence of process non-idealities. Several phase detector architectures are analyzed to determine the effects of process non-idealities. Static phase offsets are introduced as a figure of merit for phase detectors and a mathematical framework is described to characterize the negative effects of static phase offsets on CDR circuits. Two approaches are taken to improve the robustness of CDR circuits. First, calibration circuits are introduced which correct for static phase offsets in CDR circuits. Secondly, phase detector circuits are introduced which have been designed to optimize both performance and robustness. Several prototype chips which implement these schemes will be described and measured results will be presented. These results show that while CDR circuits are vulnerable to the effects of process non-idealities, there are circuit techniques which can mitigate many of these concerns

    Low Power Clock and Data Recovery Integrated Circuits

    Get PDF
    Advances in technology and the introduction of high speed processors have increased the demand for fast, compact and commercial methods for transferring large amounts of data. The next generation of the communication access network will use optical fiber as a media for data transmission to the subscriber. In optical data or chip-to-chip data communication, the continuous received data needs to be converted to discrete data. For the conversion, a synchronous clock and data are required. A clock and data recovery (CDR) circuit recovers the phase information from the data and generates the in-phase clock and data. In this dissertation, two clock and data recovery circuits for Giga-bits per second (Gbps) serial data communication are designed and fabricated in 180nm and 90nm CMOS technology. The primary objective was to reduce the circuit power dissipation for multi-channel data communication applications. The power saving is achieved using low swing voltage signaling scheme. Furthermore, a novel low input swing Alexander phase detector is introduced. The proposed phase detector reduces the power consumption at the transmitter and receiver blocks. The circuit demonstrates a low power dissipation of 340ยตW/Gbps in 90nm CMOS technology. The CDR is able to recover the input signal swing of 35mVp. The peak-to-peak jitter is 21ps and RMS jitter is 2.5ps. Total core area excluding pads is approximately 0.01mm2

    Fast jitter tolerance testing for high-speed serial links in post-silicon validation

    Get PDF
    Post-silicon electrical validation of high-speed input/output (HSIO) links is a critical process for product qualification schedules of high-performance computer platforms under current aggressive time-to-market (TTM) commitments. Improvements in signaling methods, circuits, and process technologies have allowed HSIO data rates to scale well beyond 10 Gb/s. Noise and EM effects can create multiple signal integrity problems, which are aggravated by continuously faster bus technologies. The goal of post-silicon validation for HSIO links is to ensure design robustness of both receiver (Rx) and transmitter (Tx) circuitry in real system environments. One of the most common ways to evaluate the performance of a HSIO link is to characterize the Rx jitter tolerance (JTOL) performance by measuring the bit error rate (BER) of the link under worst stressing conditions. However, JTOL testing is extremely time-consuming when executed at specification BER considering manufacturing process, voltage, and temperature (PVT) test coverage. In order to significantly accelerate this process, we propose a novel approach for JTOL testing based on an efficient direct search optimization methodology. Our approach exploits the fast execution of a modified golden section search with a high BER, while overcoming the lack of correlation between different BERs by performing a downward linear search at the actual target BER until no errors are found. Our proposed methodology is validated in a realistic industrial server post-silicon validation platform for three different computer HSIO links: SATA, USB3, and PCIe3.ITESO, A.C

    Design and modelling of clock and data recovery integrated circuit in 130 nm CMOS technology for 10 Gb/s serial data communications

    Get PDF
    This thesis describes the design and implementation of a fully monolithic 10 Gb/s phase and frequency-locked loop based clock and data recovery (PFLL-CDR) integrated circuit, as well as the Verilog-A modeling of an asynchronous serial link based chip to chip communication system incorporating the proposed concept. The proposed design was implemented and fabricated using the 130 nm CMOS technology offered by UMC (United Microelectronics Corporation). Different PLL-based CDR circuits topologies were investigated in terms of architecture and speed. Based on the investigation, we proposed a new concept of quarter-rate (i.e. the clocking speed in the circuit is 2.5 GHz for 10 Gb/s data rate) and dual-loop topology which consists of phase-locked and frequency-locked loop. The frequency-locked loop (FLL) operates independently from the phase-locked loop (PLL), and has a highly-desired feature that once the proper frequency has been acquired, the FLL is automatically disabled and the PLL will take over to adjust the clock edges approximately in the middle of the incoming data bits for proper sampling. Another important feature of the proposed quarter-rate concept is the inherent 1-to-4 demultiplexing of the input serial data stream. A new quarter-rate phase detector based on the non-linear early-late phase detector concept has been used to achieve the multi-Giga bit/s speed and to eliminate the need of the front-end data pre-processing (edge detecting) units usually associated with the conventional CDR circuits. An eight-stage differential ring oscillator running at 2.5 GHz frequency center was used for the voltage-controlled oscillator (VCO) to generate low-jitter multi-phase clock signals. The transistor level simulation results demonstrated excellent performances in term of locking speed and power consumption. In order to verify the accuracy of the proposed quarter-rate concept, a clockless asynchronous serial link incorporating the proposed concept and communicating two chips at 10 Gb/s has been modelled at gate level using the Verilog-A language and time-domain simulated

    Deterministic Jitter in Broadband Communication

    Get PDF
    The past decade has witnessed a drastic change in the design of high-speed serial links. While Silicon fabrication technology has produced smaller, faster transistors, transmission line interconnects between chips and through backplanes have not substantially improved and have a practical bandwidth of around 3GHz. As serial link speeds increase, new techniques must be introduced to overcome the bandwidth limitation and maintain digital signal integrity. This thesis studies timing issues pertaining to bandwidth-limited interconnects. Jitter is defined as the timing uncertainty at a threshold used to detect the digital signal. Reliable digital communication requires minimizing jitter. The analysis and modeling presented here focuses on two types of deterministic jitter. First, dispersion of the digital signal in a bandwidth-limited channel creates data-dependent jitter. Our analysis links data sequences to unique timing deviations through the channel response and is shown for general linear time-invariant systems. A Markov model is constructed to study the impact of jitter on the operation of the serial link and provide insight in circuit performance. Second, an analysis of bounded-uncorrected jitter resulting from crosstalk induced in parallel serial links is presented. Timing equalization is introduced to improve the signal integrity of high-speed links. The analysis of deterministic jitter leads to novel techniques for compensating the timing ambiguity in the received data. Data-dependent jitter equalization is discussed at both the receiver, where it complements the operation of clock and data recovery circuits, and as a phase pre-emphasis technique. Crosstalk-induced, bounded-uncorrected jitter can also be compensated. By detecting electromagnetic modes between neighboring serial links, a transmitter or receiver anticipates the timing deviation that has occurred along the transmission line. Finally, we discuss a new circuit technique for submillimeter integrated circuits. Demands of wireless communication and the high speed of Silicon Germanium transistors provide opportunities for unique radio architectures for submillimeter integrated circuits. Scalable, fully-integrated phased arrays control a radiated beam pattern electronically through tiling multiple chips. Coupled-oscillator arrays are used for the first time to subharmonically injection-lock across a chip or between multiple chips to provide phase coherence across an array.</p
    • โ€ฆ
    corecore