15,658 research outputs found

    A Linear Category of Polynomial Diagrams

    Get PDF
    We present a categorical model for intuitionistic linear logic where objects are polynomial diagrams and morphisms are simulation diagrams. The multiplicative structure (tensor product and its adjoint) can be defined in any locally cartesian closed category, whereas the additive (product and coproduct) and exponential Tensor-comonoid comonad) structures require additional properties and are only developed in the category Set, where the objects and morphisms have natural interpretations in terms of games, simulation and strategies.Comment: 20 page

    Calculus of functors, operad formality, and rational homology of embedding spaces

    Full text link
    Let M be a smooth manifold and V a Euclidean space. Let Ebar(M,V) be the homotopy fiber of the map from Emb(M,V) to Imm(M,V). This paper is about the rational homology of Ebar(M,V). We study it by applying embedding calculus and orthogonal calculus to the bi-functor (M,V) |--> HQ /\Ebar(M,V)_+. Our main theorem states that if the dimension of V is more than twice the embedding dimension of M, the Taylor tower in the sense of orthogonal calculus (henceforward called ``the orthogonal tower'') of this functor splits as a product of its layers. Equivalently, the rational homology spectral sequence associated with the tower collapses at E^1. In the case of knot embeddings, this spectral sequence coincides with the Vassiliev spectral sequence. The main ingredients in the proof are embedding calculus and Kontsevich's theorem on the formality of the little balls operad. We write explicit formulas for the layers in the orthogonal tower of the functor HQ /\Ebar(M,V)_+. The formulas show, in particular, that the (rational) homotopy type of the layers of the orthogonal tower is determined by the (rational) homology type of M. This, together with our rational splitting theorem, implies that under the above assumption on codimension, the rational homology groups of Ebar(M,V) are determined by the rational homology type of M.Comment: 35 pages. An erroneous definition in the last section was corrected, as well as several misprints. The introduction was somewhat reworked. The paper was accepted for publication in Acta Mathematic

    On cubes of Frobenius extensions

    No full text

    The universal Vassiliev invariant for the Lie superalgebra gl(1|1)

    Full text link
    We compute the universal weight system for Vassiliev invariants coming from the Lie superalgebra gl(1|1) applying the construction of \cite{YB}. This weight system is a function from the space of chord diagrams to the center ZZ of the universal enveloping algebra of gl(1|1), and we find a combinatorial expression for it in terms of the standard generators of ZZ. The resulting knot invariants generalize the Alexander-Conway polynomial.Comment: 44 pages with figures, wrapped with uufiles, requires epsf.sty -- Added a short section about deframin
    corecore