4,737 research outputs found

    Improved Compact Visibility Representation of Planar Graph via Schnyder's Realizer

    Full text link
    Let GG be an nn-node planar graph. In a visibility representation of GG, each node of GG is represented by a horizontal line segment such that the line segments representing any two adjacent nodes of GG are vertically visible to each other. In the present paper we give the best known compact visibility representation of GG. Given a canonical ordering of the triangulated GG, our algorithm draws the graph incrementally in a greedy manner. We show that one of three canonical orderings obtained from Schnyder's realizer for the triangulated GG yields a visibility representation of GG no wider than 22n−4015\frac{22n-40}{15}. Our easy-to-implement O(n)-time algorithm bypasses the complicated subroutines for four-connected components and four-block trees required by the best previously known algorithm of Kant. Our result provides a negative answer to Kant's open question about whether 3n−62\frac{3n-6}{2} is a worst-case lower bound on the required width. Also, if GG has no degree-three (respectively, degree-five) internal node, then our visibility representation for GG is no wider than 4n−93\frac{4n-9}{3} (respectively, 4n−73\frac{4n-7}{3}). Moreover, if GG is four-connected, then our visibility representation for GG is no wider than n−1n-1, matching the best known result of Kant and He. As a by-product, we obtain a much simpler proof for a corollary of Wagner's Theorem on realizers, due to Bonichon, Sa\"{e}c, and Mosbah.Comment: 11 pages, 6 figures, the preliminary version of this paper is to appear in Proceedings of the 20th Annual Symposium on Theoretical Aspects of Computer Science (STACS), Berlin, Germany, 200

    Semi-dynamic connectivity in the plane

    Full text link
    Motivated by a path planning problem we consider the following procedure. Assume that we have two points ss and tt in the plane and take K=∅\mathcal{K}=\emptyset. At each step we add to K\mathcal{K} a compact convex set that does not contain ss nor tt. The procedure terminates when the sets in K\mathcal{K} separate ss and tt. We show how to add one set to K\mathcal{K} in O(1+kα(n))O(1+k\alpha(n)) amortized time plus the time needed to find all sets of K\mathcal{K} intersecting the newly added set, where nn is the cardinality of K\mathcal{K}, kk is the number of sets in K\mathcal{K} intersecting the newly added set, and α(⋅)\alpha(\cdot) is the inverse of the Ackermann function

    Drawing non-layered tidy trees in linear time

    Get PDF
    The well-known Reingold–Tilford algorithm produces tidy-layered drawings of trees: drawings where all nodes at the same depth are vertically aligned. However, when nodes have varying heights, layered drawing may use more vertical space than necessary. A non-layered drawing of a tree places children at a fixed distance from the parent, thereby giving a more vertically compact drawing. Moreover, non-layered drawings can also be used to draw trees where the vertical position of each node is given, by adding dummy nodes. In this paper, we present the first linear-time algorithm for producing non-layered drawings. Our algorithm is a modification of the Reingold–Tilford algorithm, but the original complexity proof of the Reingold–Tilford algorithm uses an invariant that does not hold for the non-layered case. We give an alternative proof of the algorithm and its extension to non-layered drawings. To improve drawings of trees of unbounded degree, extensions to the Reingold–Tilford algorithm have been proposed. These extensions also work in the non-layered case, but we show that they then cause a O(n2) run-time. We then propose a modification to these extensions that restores the O(n) run-time

    Drawing non-layered tidy trees in linear time

    Get PDF
    The well-known Reingold–Tilford algorithm produces tidy-layered drawings of trees: drawings where all nodes at the same depth are vertically aligned. However, when nodes have varying heights, layered drawing may use more vertical space than necessary. A non-layered drawing of a tree places children at a fixed distance from the parent, thereby giving a more vertically compact drawing. Moreover, non-layered drawings can also be used to draw trees where the vertical position of each node is given, by adding dummy nodes. In this paper, we present the first linear-time algorithm for producing non-layered drawings. Our algorithm is a modification of the Reingold–Tilford algorithm, but the original complexity proof of the Reingold–Tilford algorithm uses an invariant that does not hold for the non-layered case. We give an alternative proof of the algorithm and its extension to non-layered drawings. To improve drawings of trees of unbounded degree, extensions to the Reingold–Tilford algorithm have been proposed. These extensions also work in the non-layered case, but we show that they then cause a O(n2) run-time. We then propose a modification to these extensions that restores the O(n) run-time

    Decision diagrams in machine learning: an empirical study on real-life credit-risk data.

    Get PDF
    Decision trees are a widely used knowledge representation in machine learning. However, one of their main drawbacks is the inherent replication of isomorphic subtrees, as a result of which the produced classifiers might become too large to be comprehensible by the human experts that have to validate them. Alternatively, decision diagrams, a generalization of decision trees taking on the form of a rooted, acyclic digraph instead of a tree, have occasionally been suggested as a potentially more compact representation. Their application in machine learning has nonetheless been criticized, because the theoretical size advantages of subgraph sharing did not always directly materialize in the relatively scarce reported experiments on real-world data. Therefore, in this paper, starting from a series of rule sets extracted from three real-life credit-scoring data sets, we will empirically assess to what extent decision diagrams are able to provide a compact visual description. Furthermore, we will investigate the practical impact of finding a good attribute ordering on the achieved size savings.Advantages; Classifiers; Credit scoring; Data; Decision; Decision diagrams; Decision trees; Empirical study; Knowledge; Learning; Real life; Representation; Size; Studies;

    Small grid embeddings of 3-polytopes

    Full text link
    We introduce an algorithm that embeds a given 3-connected planar graph as a convex 3-polytope with integer coordinates. The size of the coordinates is bounded by O(27.55n)=O(188n)O(2^{7.55n})=O(188^{n}). If the graph contains a triangle we can bound the integer coordinates by O(24.82n)O(2^{4.82n}). If the graph contains a quadrilateral we can bound the integer coordinates by O(25.46n)O(2^{5.46n}). The crucial part of the algorithm is to find a convex plane embedding whose edges can be weighted such that the sum of the weighted edges, seen as vectors, cancel at every point. It is well known that this can be guaranteed for the interior vertices by applying a technique of Tutte. We show how to extend Tutte's ideas to construct a plane embedding where the weighted vector sums cancel also on the vertices of the boundary face
    • …
    corecore