2,162 research outputs found

    Countable locally 2-arc-transitive bipartite graphs

    Get PDF
    We present an order-theoretic approach to the study of countably infinite locally 2-arc-transitive bipartite graphs. Our approach is motivated by techniques developed by Warren and others during the study of cycle-free partial orders. We give several new families of previously unknown countably infinite locally-2-arc-transitive graphs, each family containing continuum many members. These examples are obtained by gluing together copies of incidence graphs of semilinear spaces, satisfying a certain symmetry property, in a tree-like way. In one case we show how the classification problem for that family relates to the problem of determining a certain family of highly arc-transitive digraphs. Numerous illustrative examples are given.Comment: 29 page

    Global offensive kk-alliances in digraphs

    Full text link
    In this paper, we initiate the study of global offensive kk-alliances in digraphs. Given a digraph D=(V(D),A(D))D=(V(D),A(D)), a global offensive kk-alliance in a digraph DD is a subset S⊆V(D)S\subseteq V(D) such that every vertex outside of SS has at least one in-neighbor from SS and also at least kk more in-neighbors from SS than from outside of SS, by assuming kk is an integer lying between two minus the maximum in-degree of DD and the maximum in-degree of DD. The global offensive kk-alliance number γko(D)\gamma_{k}^{o}(D) is the minimum cardinality among all global offensive kk-alliances in DD. In this article we begin the study of the global offensive kk-alliance number of digraphs. For instance, we prove that finding the global offensive kk-alliance number of digraphs DD is an NP-hard problem for any value k∈{2−Δ−(D),…,Δ−(D)}k\in \{2-\Delta^-(D),\dots,\Delta^-(D)\} and that it remains NP-complete even when restricted to bipartite digraphs when we consider the non-negative values of kk given in the interval above. Based on these facts, lower bounds on γko(D)\gamma_{k}^{o}(D) with characterizations of all digraphs attaining the bounds are given in this work. We also bound this parameter for bipartite digraphs from above. For the particular case k=1k=1, an immediate result from the definition shows that γ(D)≤γ1o(D)\gamma(D)\leq \gamma_{1}^{o}(D) for all digraphs DD, in which γ(D)\gamma(D) stands for the domination number of DD. We show that these two digraph parameters are the same for some infinite families of digraphs like rooted trees and contrafunctional digraphs. Moreover, we show that the difference between γ1o(D)\gamma_{1}^{o}(D) and γ(D)\gamma(D) can be arbitrary large for directed trees and connected functional digraphs
    • …
    corecore