113,035 research outputs found

    Detecting spatial homogeneity in the world trade web with Detrended Fluctuation Analysis

    Full text link
    In a spatially embedded network, that is a network where nodes can be uniquely determined in a system of coordinates, links' weights might be affected by metric distances coupling every pair of nodes (dyads). In order to assess to what extent metric distances affect relationships (link's weights) in a spatially embedded network, we propose a methodology based on DFA (Detrended Fluctuation Analysis). DFA is a well developed methodology to evaluate autocorrelations and estimate long-range behaviour in time series. We argue it can be further extended to spatially ordered series in order to assess autocorrelations in values. A scaling exponent of 0.5 (uncorrelated data) would thereby signal a perfect homogeneous space embedding the network. We apply the proposed methodology to the World Trade Web (WTW) during the years 1949-2000 and we find, in some contrast with predictions of gravity models, a declining influence of distances on trading relationships.Comment: 15 pages, 7 figure

    Likelihood-based assessment of dynamic networks

    Get PDF
    This paper deals with the problem of assessing probabilistic models that represent the evolution of a target graph. Such models have long been a topic of interest for a number of networks, especially communications networks. The solution developed in this paper gives a rigorous way to calculate the likelihood of the observed graph evolution having arisen from a wide variety of hypothesized models encompassing many already present in the literature. The framework is shown to recover parameters from artificial data and is tested on real data sets from Facebook and from emails from the company Enron

    Interests Diffusion in Social Networks

    Full text link
    Understanding cultural phenomena on Social Networks (SNs) and exploiting the implicit knowledge about their members is attracting the interest of different research communities both from the academic and the business side. The community of complexity science is devoting significant efforts to define laws, models, and theories, which, based on acquired knowledge, are able to predict future observations (e.g. success of a product). In the mean time, the semantic web community aims at engineering a new generation of advanced services by defining constructs, models and methods, adding a semantic layer to SNs. In this context, a leapfrog is expected to come from a hybrid approach merging the disciplines above. Along this line, this work focuses on the propagation of individual interests in social networks. The proposed framework consists of the following main components: a method to gather information about the members of the social networks; methods to perform some semantic analysis of the Domain of Interest; a procedure to infer members' interests; and an interests evolution theory to predict how the interests propagate in the network. As a result, one achieves an analytic tool to measure individual features, such as members' susceptibilities and authorities. Although the approach applies to any type of social network, here it is has been tested against the computer science research community. The DBLP (Digital Bibliography and Library Project) database has been elected as test-case since it provides the most comprehensive list of scientific production in this field.Comment: 30 pages 13 figs 4 table
    • …
    corecore