1,263 research outputs found

    POWER AND PERFORMANCE STUDIES OF THE EXPLICIT MULTI-THREADING (XMT) ARCHITECTURE

    Get PDF
    Power and thermal constraints gained critical importance in the design of microprocessors over the past decade. Chipmakers failed to keep power at bay while sustaining the performance growth of serial computers at the rate expected by consumers. As an alternative, they turned to fitting an increasing number of simpler cores on a single die. While this is a step forward for relaxing the constraints, the issue of power is far from resolved and it is joined by new challenges which we explain next. As we move into the era of many-cores, processors consisting of 100s, even 1000s of cores, single-task parallelism is the natural path for building faster general-purpose computers. Alas, the introduction of parallelism to the mainstream general-purpose domain brings another long elusive problem to focus: ease of parallel programming. The result is the dual challenge where power efficiency and ease-of-programming are vital for the prevalence of up and coming many-core architectures. The observations above led to the lead goal of this dissertation: a first order validation of the claim that even under power/thermal constraints, ease-of-programming and competitive performance need not be conflicting objectives for a massively-parallel general-purpose processor. As our platform, we choose the eXplicit Multi-Threading (XMT) many-core architecture for fine grained parallel programs developed at the University of Maryland. We hope that our findings will be a trailblazer for future commercial products. XMT scales up to thousand or more lightweight cores and aims at improving single task execution time while making the task for the programmer as easy as possible. Performance advantages and ease-of-programming of XMT have been shown in a number of publications, including a study that we present in this dissertation. Feasibility of the hardware concept has been exhibited via FPGA and ASIC (per our partial involvement) prototypes. Our contributions target the study of power and thermal envelopes of an envisioned 1024-core XMT chip (XMT1024) under programs that exist in popular parallel benchmark suites. First, we compare XMT against an area and power equivalent commercial high-end many-core GPU. We demonstrate that XMT can provide an average speedup of 8.8x in irregular parallel programs that are common and important in general purpose computing. Even under the worst-case power estimation assumptions for XMT, average speedup is only reduced by half. We further this study by experimentally evaluating the performance advantages of Dynamic Thermal Management (DTM), when applied to XMT1024. DTM techniques are frequently used in current single and multi-core processors, however until now their effects on single-tasked many-cores have not been examined in detail. It is our purpose to explore how existing techniques can be tailored for XMT to improve performance. Performance improvements up to 46% over a generic global management technique has been demonstrated. The insights we provide can guide designers of other similar many-core architectures. A significant infrastructure contribution of this dissertation is a highly configurable cycle-accurate simulator, XMTSim. To our knowledge, XMTSim is currently the only publicly-available shared-memory many-core simulator with extensive capabilities for estimating power and temperature, as well as evaluating dynamic power and thermal management algorithms. As a major component of the XMT programming toolchain, it is not only used as the infrastructure in this work but also contributed to other publications and dissertations

    Toolchain for Programming, Simulating and Studying the XMT Many-Core Architecture

    Full text link

    Improving the Performance and Endurance of Persistent Memory with Loose-Ordering Consistency

    Full text link
    Persistent memory provides high-performance data persistence at main memory. Memory writes need to be performed in strict order to satisfy storage consistency requirements and enable correct recovery from system crashes. Unfortunately, adhering to such a strict order significantly degrades system performance and persistent memory endurance. This paper introduces a new mechanism, Loose-Ordering Consistency (LOC), that satisfies the ordering requirements at significantly lower performance and endurance loss. LOC consists of two key techniques. First, Eager Commit eliminates the need to perform a persistent commit record write within a transaction. We do so by ensuring that we can determine the status of all committed transactions during recovery by storing necessary metadata information statically with blocks of data written to memory. Second, Speculative Persistence relaxes the write ordering between transactions by allowing writes to be speculatively written to persistent memory. A speculative write is made visible to software only after its associated transaction commits. To enable this, our mechanism supports the tracking of committed transaction ID and multi-versioning in the CPU cache. Our evaluations show that LOC reduces the average performance overhead of memory persistence from 66.9% to 34.9% and the memory write traffic overhead from 17.1% to 3.4% on a variety of workloads.Comment: This paper has been accepted by IEEE Transactions on Parallel and Distributed System

    Code Generation and Global Optimization Techniques for a Reconfigurable PRAM-NUMA Multicore Architecture

    Full text link

    Enhancing Productivity and Performance Portability of General-Purpose Parallel Programming

    Get PDF
    This work focuses on compiler and run-time techniques for improving the productivity and the performance portability of general-purpose parallel programming. More specifically, we focus on shared-memory task-parallel languages, where the programmer explicitly exposes parallelism in the form of short tasks that may outnumber the cores by orders of magnitude. The compiler, the run-time, and the platform (henceforth the system) are responsible for harnessing this unpredictable amount of parallelism, which can vary from none to excessive, towards efficient execution. The challenge arises from the aspiration to support fine-grained irregular computations and nested parallelism. This work is even more ambitious by also aspiring to lay the foundations to efficiently support declarative code, where the programmer exposes all available parallelism, using high-level language constructs such as parallel loops, reducers or futures. The appeal of declarative code is twofold for general-purpose programming: it is often easier for the programmer who does not have to worry about the granularity of the exposed parallelism, and it achieves better performance portability by avoiding overfitting to a small range of platforms and inputs for which the programmer is coarsening. Furthermore, PRAM algorithms, an important class of parallel algorithms, naturally lend themselves to declarative programming, so supporting it is a necessary condition for capitalizing on the wealth of the PRAM theory. Unfortunately, declarative codes often expose such an overwhelming number of fine-grained tasks that existing systems fail to deliver performance. Our contributions can be partitioned into three components. First, we tackle the issue of coarsening, which declarative code leaves to the system. We identify two goals of coarsening and advocate tackling them separately, using static compiler transformations for one and dynamic run-time approaches for the other. Additionally, we present evidence that the current practice of burdening the programmer with coarsening either leads to codes with poor performance-portability, or to a significantly increased programming effort. This is a ``show-stopper'' for general-purpose programming. To compare the performance portability among approaches, we define an experimental framework and two metrics, and we demonstrate that our approaches are preferable. We close the chapter on coarsening by presenting compiler transformations that automatically coarsen some types of very fine-grained codes. Second, we propose Lazy Scheduling, an innovative run-time scheduling technique that infers the platform load at run-time, using information already maintained. Based on the inferred load, Lazy Scheduling adapts the amount of available parallelism it exposes for parallel execution and, thus, saves parallelism overheads that existing approaches pay. We implement Lazy Scheduling and present experimental results on four different platforms. The results show that Lazy Scheduling is vastly superior for declarative codes and competitive, if not better, for coarsened codes. Moreover, Lazy Scheduling is also superior in terms of performance-portability, supporting our thesis that it is possible to achieve reasonable efficiency and performance portability with declarative codes. Finally, we also implement Lazy Scheduling on XMT, an experimental manycore platform developed at the University of Maryland, which was designed to support codes derived from PRAM algorithms. On XMT, we manage to harness the existing hardware support for scheduling flat parallelism to compose it with Lazy Scheduling, which supports nested parallelism. In the resulting hybrid scheduler, the hardware and software work in synergy to overcome each other's weaknesses. We show the performance composability of the hardware and software schedulers, both in an abstract cost model and experimentally, as the hybrid always performs better than the software scheduler alone. Furthermore, the cost model is validated by using it to predict if it is preferable to execute a code sequentially, with outer parallelism, or with nested parallelism, depending on the input, the available hardware parallelism and the calling context of the parallel code

    Virtual Organization Clusters: Self-Provisioned Clouds on the Grid

    Get PDF
    Virtual Organization Clusters (VOCs) provide a novel architecture for overlaying dedicated cluster systems on existing grid infrastructures. VOCs provide customized, homogeneous execution environments on a per-Virtual Organization basis, without the cost of physical cluster construction or the overhead of per-job containers. Administrative access and overlay network capabilities are granted to Virtual Organizations (VOs) that choose to implement VOC technology, while the system remains completely transparent to end users and non-participating VOs. Unlike alternative systems that require explicit leases, VOCs are autonomically self-provisioned according to configurable usage policies. As a grid computing architecture, VOCs are designed to be technology agnostic and are implementable by any combination of software and services that follows the Virtual Organization Cluster Model. As demonstrated through simulation testing and evaluation of an implemented prototype, VOCs are a viable mechanism for increasing end-user job compatibility on grid sites. On existing production grids, where jobs are frequently submitted to a small subset of sites and thus experience high queuing delays relative to average job length, the grid-wide addition of VOCs does not adversely affect mean job sojourn time. By load-balancing jobs among grid sites, VOCs can reduce the total amount of queuing on a grid to a level sufficient to counteract the performance overhead introduced by virtualization

    Space benefits: The secondary application of aerospace technology in other sectors of the economy

    Get PDF
    Benefit cases of aerospace technology utilization are presented for manufacturing, transportation, utilities, and health. General, organization, geographic, and field center indexes are included

    Proceedings of the 5th International Workshop on Reconfigurable Communication-centric Systems on Chip 2010 - ReCoSoC\u2710 - May 17-19, 2010 Karlsruhe, Germany. (KIT Scientific Reports ; 7551)

    Get PDF
    ReCoSoC is intended to be a periodic annual meeting to expose and discuss gathered expertise as well as state of the art research around SoC related topics through plenary invited papers and posters. The workshop aims to provide a prospective view of tomorrow\u27s challenges in the multibillion transistor era, taking into account the emerging techniques and architectures exploring the synergy between flexible on-chip communication and system reconfigurability

    Performance Aspects of Synthesizable Computing Systems

    Get PDF
    corecore