112 research outputs found

    Visual-Guided Mesh Repair

    Full text link
    Mesh repair is a long-standing challenge in computer graphics and related fields. Converting defective meshes into watertight manifold meshes can greatly benefit downstream applications such as geometric processing, simulation, fabrication, learning, and synthesis. In this work, we first introduce three visual measures for visibility, orientation, and openness, based on ray-tracing. We then present a novel mesh repair framework that incorporates visual measures with several critical steps, i.e., open surface closing, face reorientation, and global optimization, to effectively repair defective meshes, including gaps, holes, self-intersections, degenerate elements, and inconsistent orientations. Our method reduces unnecessary mesh complexity without compromising geometric accuracy or visual quality while preserving input attributes such as UV coordinates for rendering. We evaluate our approach on hundreds of models randomly selected from ShapeNet and Thingi10K, demonstrating its effectiveness and robustness compared to existing approaches

    Hybrid Bayesian Eigenobjects: Combining Linear Subspace and Deep Network Methods for 3D Robot Vision

    Full text link
    We introduce Hybrid Bayesian Eigenobjects (HBEOs), a novel representation for 3D objects designed to allow a robot to jointly estimate the pose, class, and full 3D geometry of a novel object observed from a single viewpoint in a single practical framework. By combining both linear subspace methods and deep convolutional prediction, HBEOs efficiently learn nonlinear object representations without directly regressing into high-dimensional space. HBEOs also remove the onerous and generally impractical necessity of input data voxelization prior to inference. We experimentally evaluate the suitability of HBEOs to the challenging task of joint pose, class, and shape inference on novel objects and show that, compared to preceding work, HBEOs offer dramatically improved performance in all three tasks along with several orders of magnitude faster runtime performance.Comment: To appear in the International Conference on Intelligent Robots (IROS) - Madrid, 201

    Shape from Projections via Differentiable Forward Projector for Computed Tomography

    Full text link
    In computed tomography, the reconstruction is typically obtained on a voxel grid. In this work, however, we propose a mesh-based reconstruction method. For tomographic problems, 3D meshes have mostly been studied to simulate data acquisition, but not for reconstruction, for which a 3D mesh means the inverse process of estimating shapes from projections. In this paper, we propose a differentiable forward model for 3D meshes that bridge the gap between the forward model for 3D surfaces and optimization. We view the forward projection as a rendering process, and make it differentiable by extending recent work in differentiable rendering. We use the proposed forward model to reconstruct 3D shapes directly from projections. Experimental results for single-object problems show that the proposed method outperforms traditional voxel-based methods on noisy simulated data. We also apply the proposed method on electron tomography images of nanoparticles to demonstrate the applicability of the method on real data

    Repairing geometric errors in 3D urban models with kinetic data structures

    Get PDF
    International audience3D urban models created either interactively by human operators or automatically with reconstruction algorithms often contain geometric and semantic errors. Correcting them in an automated manner is an important scientific challenge. Prior work, which traditionally relies on local analysis and heuristic-based geometric operations on mesh data structures, is typically tailored-made for specific 3D formats and urban objects. We propose a more general method to process different types of urban models without tedious parameter tuning. The key idea lies on the construction of a kinetic data structure that decomposes the 3D space into polyhedra by extending the facets of the imperfect input model. Such a data structure allows us to rebuild all the relations between the facets in an efficient and robust manner. Once built, the cells of the polyhedral partition are regrouped by semantic classes to reconstruct the corrected output model. We demonstrate the robustness and efficiency of our algorithm on a variety of real-world defect-laden models and show its competitiveness with respect to traditional mesh repairing techniques from both Building Information Modeling (BIM) and Geographic Information Systems (GIS) data

    A Parallel Feature-preserving Mesh Variable Offsetting Method with Dynamic Programming

    Full text link
    Mesh offsetting plays an important role in discrete geometric processing. In this paper, we propose a parallel feature-preserving mesh offsetting framework with variable distance. Different from the traditional method based on distance and normal vector, a new calculation of offset position is proposed by using dynamic programming and quadratic programming, and the sharp feature can be preserved after offsetting. Instead of distance implicit field, a spatial coverage region represented by polyhedral for computing offsets is proposed. Our method can generate an offsetting model with smaller mesh size, and also can achieve high quality without gaps, holes, and self-intersections. Moreover, several acceleration techniques are proposed for the efficient mesh offsetting, such as the parallel computing with grid, AABB tree and rays computing. In order to show the efficiency and robustness of the proposed framework, we have tested our method on the quadmesh dataset, which is available at [https://www.quadmesh.cloud]. The source code of the proposed algorithm is available on GitHub at [https://github.com/iGame-Lab/PFPOffset]

    From 3D Models to 3D Prints: an Overview of the Processing Pipeline

    Get PDF
    Due to the wide diffusion of 3D printing technologies, geometric algorithms for Additive Manufacturing are being invented at an impressive speed. Each single step, in particular along the Process Planning pipeline, can now count on dozens of methods that prepare the 3D model for fabrication, while analysing and optimizing geometry and machine instructions for various objectives. This report provides a classification of this huge state of the art, and elicits the relation between each single algorithm and a list of desirable objectives during Process Planning. The objectives themselves are listed and discussed, along with possible needs for tradeoffs. Additive Manufacturing technologies are broadly categorized to explicitly relate classes of devices and supported features. Finally, this report offers an analysis of the state of the art while discussing open and challenging problems from both an academic and an industrial perspective.Comment: European Union (EU); Horizon 2020; H2020-FoF-2015; RIA - Research and Innovation action; Grant agreement N. 68044
    • …
    corecore