2,484 research outputs found

    Adaptive User Perspective Rendering for Handheld Augmented Reality

    Full text link
    Handheld Augmented Reality commonly implements some variant of magic lens rendering, which turns only a fraction of the user's real environment into AR while the rest of the environment remains unaffected. Since handheld AR devices are commonly equipped with video see-through capabilities, AR magic lens applications often suffer from spatial distortions, because the AR environment is presented from the perspective of the camera of the mobile device. Recent approaches counteract this distortion based on estimations of the user's head position, rendering the scene from the user's perspective. To this end, approaches usually apply face-tracking algorithms on the front camera of the mobile device. However, this demands high computational resources and therefore commonly affects the performance of the application beyond the already high computational load of AR applications. In this paper, we present a method to reduce the computational demands for user perspective rendering by applying lightweight optical flow tracking and an estimation of the user's motion before head tracking is started. We demonstrate the suitability of our approach for computationally limited mobile devices and we compare it to device perspective rendering, to head tracked user perspective rendering, as well as to fixed point of view user perspective rendering

    An Introduction to 3D User Interface Design

    Get PDF
    3D user interface design is a critical component of any virtual environment (VE) application. In this paper, we present a broad overview of three-dimensional (3D) interaction and user interfaces. We discuss the effect of common VE hardware devices on user interaction, as well as interaction techniques for generic 3D tasks and the use of traditional two-dimensional interaction styles in 3D environments. We divide most user interaction tasks into three categories: navigation, selection/manipulation, and system control. Throughout the paper, our focus is on presenting not only the available techniques, but also practical guidelines for 3D interaction design and widely held myths. Finally, we briefly discuss two approaches to 3D interaction design, and some example applications with complex 3D interaction requirements. We also present an annotated online bibliography as a reference companion to this article

    Ambient Gestures

    No full text
    We present Ambient Gestures, a novel gesture-based system designed to support ubiquitous ‘in the environment’ interactions with everyday computing technology. Hand gestures and audio feedback allow users to control computer applications without reliance on a graphical user interface, and without having to switch from the context of a non-computer task to the context of the computer. The Ambient Gestures system is composed of a vision recognition software application, a set of gestures to be processed by a scripting application and a navigation and selection application that is controlled by the gestures. This system allows us to explore gestures as the primary means of interaction within a multimodal, multimedia environment. In this paper we describe the Ambient Gestures system, define the gestures and the interactions that can be achieved in this environment and present a formative study of the system. We conclude with a discussion of our findings and future applications of Ambient Gestures in ubiquitous computing

    Cognitive Ergonomics in Virtual Environments: Development of an Intuitive and Appropriate Input Device for Navigating in a Virtual Maze

    Get PDF
    For patients suffering from mild cognitive impairments, the navigation through a virtual maze should be as intuitive and efficient as possible in order to minimize cognitive and physical strain. This paper discusses the appropriateness of interaction devices for being used for easy navigation tasks. Information gained from human centered evaluation was used to develop an intuitive and ergonomic interaction device. Two experiments examined the usability of tracked interaction devices. Usability problems with the devices are discussed. The findings from the experiments were translated into general design guidance, in addition to specific recommendations. A new device was designed on the basis of these recommendations and its usability was evaluated in a second experiment. The results were used to develop a lightweight interaction device for navigation in the virtual maz

    Get a Grip: Evaluating Grip Gestures for VR Input Using a Lightweight Pen

    Get PDF
    The use of Virtual Reality (VR) in applications such as data analysis, artistic creation, and clinical settings requires high precision input. However, the current design of handheld controllers, where wrist rotation is the primary input approach, does not exploit the human fingers' capability for dexterous movements for high precision pointing and selection. To address this issue, we investigated the characteristics and potential of using a pen as a VR input device. We conducted two studies. The first examined which pen grip allowed the largest range of motion---we found a tripod grip at the rear end of the shaft met this criterion. The second study investigated target selection via 'poking' and ray-casting, where we found the pen grip outperformed the traditional wrist-based input in both cases. Finally, we demonstrate potential applications enabled by VR pen input and grip postures
    corecore