2,320 research outputs found

    Characteristics of flight simulator visual systems

    Get PDF
    The physical parameters of the flight simulator visual system that characterize the system and determine its fidelity are identified and defined. The characteristics of visual simulation systems are discussed in terms of the basic categories of spatial, energy, and temporal properties corresponding to the three fundamental quantities of length, mass, and time. Each of these parameters are further addressed in relation to its effect, its appropriate units or descriptors, methods of measurement, and its use or importance to image quality

    From Model-Based to Data-Driven Simulation: Challenges and Trends in Autonomous Driving

    Full text link
    Simulation is an integral part in the process of developing autonomous vehicles and advantageous for training, validation, and verification of driving functions. Even though simulations come with a series of benefits compared to real-world experiments, various challenges still prevent virtual testing from entirely replacing physical test-drives. Our work provides an overview of these challenges with regard to different aspects and types of simulation and subsumes current trends to overcome them. We cover aspects around perception-, behavior- and content-realism as well as general hurdles in the domain of simulation. Among others, we observe a trend of data-driven, generative approaches and high-fidelity data synthesis to increasingly replace model-based simulation.Comment: Ferdinand M\"utsch, Helen Gremmelmaier, and Nicolas Becker contributed equally. Accepted for publication at CVPR 2023 VCAD worksho

    An indoor test methodology for solar-powered wireless sensor networks

    Get PDF
    Repeatable and accurate tests are important when designing hardware and algorithms for solar-powered wireless sensor networks (WSNs). Since no two days are exactly alike with regard to energy harvesting, tests must be carried out indoors. Solar simulators are traditionally used in replicating the effects of sunlight indoors - however, solar simulators are expensive, have lighting elements that have short lifetimes, and are usually not designed to carry out the types of tests that hardware and algorithm designers require. As a result, hardware and algorithm designers use tests that are inaccurate and not repeatable (both for others and also for the designers themselves). In this article we propose an indoor test methodology which does not rely on solar simulators. The test methodology has its basis in astronomy and photovoltaic (PV) cell design. We present a generic design for a test apparatus which can be used in carrying out the test methodology. We also present a specific design which we use in implementing an actual test apparatus. We test the efficacy of our test apparatus and, to demonstrate the usefulness of the test methodology, perform experiments akin to those required in projects involving solar-powered WSNs. Results of the said tests and experiments demonstrate that the test methodology is an invaluable tool for hardware and algorithm designers working with solar-powered WSNs

    Low Dimensional State Representation Learning with Robotics Priors in Continuous Action Spaces

    Get PDF
    Autonomous robots require high degrees of cognitive and motoric intelligence to come into our everyday life. In non-structured environments and in the presence of uncertainties, such degrees of intelligence are not easy to obtain. Reinforcement learning algorithms have proven to be capable of solving complicated robotics tasks in an end-to-end fashion without any need for hand-crafted features or policies. Especially in the context of robotics, in which the cost of real-world data is usually extremely high, reinforcement learning solutions achieving high sample efficiency are needed. In this paper, we propose a framework combining the learning of a low-dimensional state representation, from high-dimensional observations coming from the robot's raw sensory readings, with the learning of the optimal policy, given the learned state representation. We evaluate our framework in the context of mobile robot navigation in the case of continuous state and action spaces. Moreover, we study the problem of transferring what learned in the simulated virtual environment to the real robot without further retraining using real-world data in the presence of visual and depth distractors, such as lighting changes and moving obstacles.Comment: Paper Accepted at IROS2021. This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Investigation of smart work zone technologies using mixed simulator and field studies

    Get PDF
    Safety is the top concern in transportation, especially in work zones, as work zones deviate from regular driving environment and driver behavior is very different. In order to protect workers and create a safer work zone environment, new technologies are proposed by agencies and deployed to work zones, however, some are without scientific study before deployment. Therefore, quantitative studies need to be conducted to show the effectiveness of technologies. Driving simulator is a safe and cost-effective way to test effectiveness of new designs and compare different configurations. Field study is another scientific way of testing, as it provides absolute validity, while simulator study provides relative validity. The synergy of field and simulator studies construct a precise experiment as field study calibrates simulator design and validates simulator results. Two main projects, Evaluation of Automated Flagger Assistance Devices (AFADs), and Evaluation of Green Lights on Truck-Mounted Attenuator (TMA), are discussed in this dissertation to illustrate the investigation of smart work zone technologies using mixed simulator and field studies, along with one simulator project investigating interaction between human driven car and autonomous truck platoon in work zones. Both field and simulator studies indicated that AFADs improved stationary work zone safety by enhancing visibility, isolating workers from immediate traffic, and conveying clear guidance message to traffic. The results of green light on TMAs implied an inverse relationship between visibility/awareness of work zone and arrow board recognition/easy on eyes, but did not show if any of the light configurations is superior. Results anticipated for autonomous truck platoon in work zones are drivers behave more uniformly after being educated about the meaning of signage displayed on the back of truck, and performance measured with signage would be more preferable than those without signage. Applications of statistics are extension of studies, including experimental design, survey design, and data analysis. Data obtained from AFAD and Green Light projects were utilized to illustrate the methodologies of data analysis and model building, which incorporated simulator data, biofeedback and survey response to interpret the relationship among driver perspective and mental status, and driving behavior. From the studies conducted, it could be concluded that mixed simulator and field study is a good fit for smart work zone technologies investigation. Simulators provide a safe environment, flexibility and cost-effectiveness, while field studies calibrate and validate simulator setup and its results. The collaboration of two forms of study generates legitimate and convincing results for investigations. Applying statistical methodologies into transportation simulator and field studies is a good way to make experiment and survey design more rational, and the statistical methods are applicable for further data analysis.Includes bibliographical reference
    corecore