2,224 research outputs found

    A lifting method for analyzing distributed synchronization on the unit sphere

    Get PDF
    This paper introduces a new lifting method for analyzing convergence of continuous-time distributed synchronization/consensus systems on the unit sphere. Points on the d-dimensional unit sphere are lifted to the (d + 1)-dimensional Euclidean space. The consensus protocol on the unit sphere is the classical one, where agents move toward weighted averages of their neighbors in their respective tangent planes. Only local and relative state information is used. The directed interaction graph topologies are allowed to switch as a function of time. The dynamics of the lifted variables are governed by a nonlinear consensus protocol for which the weights contain ratios of the norms of state variables. We generalize previous convergence results for hemispheres. For a large class of consensus protocols defined for switching uniformly quasi-strongly connected time-varying graphs, we show that the consensus manifold is uniformly asymptotically stable relative to closed balls contained in a hemisphere. Compared to earlier projection based approaches used in this context such as the gnomonic projection, which is defined for hemispheres only, the lifting method applies globally. With that, the hope is that this method can be useful for future investigations on global convergence

    Collision-free motion of two robot arms in a common workspace

    Get PDF
    Collision-free motion of two robot arms in a common workspace is investigated. A collision-free motion is obtained by detecting collisions along the preplanned trajectories using a sphere model for the wrist of each robot and then modifying the paths and/or trajectories of one or both robots to avoid the collision. Detecting and avoiding collisions are based on the premise that: preplanned trajectories of the robots follow a straight line; collisions are restricted to between the wrists of the two robots (which corresponds to the upper three links of PUMA manipulators); and collisions never occur between the beginning points or end points on the straight line paths. The collision detection algorithm is described and some approaches to collision avoidance are discussed

    Near-optimal bounds for phase synchronization

    Full text link
    The problem of phase synchronization is to estimate the phases (angles) of a complex unit-modulus vector zz from their noisy pairwise relative measurements C=zz+σWC = zz^* + \sigma W, where WW is a complex-valued Gaussian random matrix. The maximum likelihood estimator (MLE) is a solution to a unit-modulus constrained quadratic programming problem, which is nonconvex. Existing works have proposed polynomial-time algorithms such as a semidefinite relaxation (SDP) approach or the generalized power method (GPM) to solve it. Numerical experiments suggest both of these methods succeed with high probability for σ\sigma up to O~(n1/2)\tilde{\mathcal{O}}(n^{1/2}), yet, existing analyses only confirm this observation for σ\sigma up to O(n1/4)\mathcal{O}(n^{1/4}). In this paper, we bridge the gap, by proving SDP is tight for σ=O(n/logn)\sigma = \mathcal{O}(\sqrt{n /\log n}), and GPM converges to the global optimum under the same regime. Moreover, we establish a linear convergence rate for GPM, and derive a tighter \ell_\infty bound for the MLE. A novel technique we develop in this paper is to track (theoretically) nn closely related sequences of iterates, in addition to the sequence of iterates GPM actually produces. As a by-product, we obtain an \ell_\infty perturbation bound for leading eigenvectors. Our result also confirms intuitions that use techniques from statistical mechanics.Comment: 34 pages, 1 figur

    Synchronization of multiple rigid body systems: a survey

    Full text link
    The multi-agent system has been a hot topic in the past few decades owing to its lower cost, higher robustness, and higher flexibility. As a particular multi-agent system, the multiple rigid body system received a growing interest since its wide applications in transportation, aerospace, and ocean exploration. Due to the non-Euclidean configuration space of attitudes and the inherent nonlinearity of the dynamics of rigid body systems, synchronization of multiple rigid body systems is quite challenging. This paper aims to present an overview of the recent progress in synchronization of multiple rigid body systems from the view of two fundamental problems. The first problem focuses on attitude synchronization, while the second one focuses on cooperative motion control in that rotation and translation dynamics are coupled. Finally, a summary and future directions are given in the conclusion

    Robust synchronization of heterogeneous robot swarms on the sphere

    Get PDF
    Synchronization on the sphere is important to certain control applications in swarm robotics. Of recent interest is the Lohe model, which generalizes the Kuramoto model from the circle to the sphere. The Lohe model is mainly studied in mathematical physics as a toy model of quantum synchronization. The model makes few assumptions, wherefore it is well-suited to represent a swarm. Previous work on this model has focused on the cases of complete and acyclic networks or the homogeneous case where all oscillator frequencies are equal. This paper concerns the case of heterogeneous oscillators connected by a non-trivial network. We show that any undesired equilibrium is exponentially unstable if the frequencies satisfy a given bound. This property can also be interpreted as a robustness result for small model perturbations of the homogeneous case with zero frequencies. As such, the Lohe model is a good choice for control applications in swarm robotics

    A quantitative taxonomy of human hand grasps

    Get PDF
    Background: A proper modeling of human grasping and of hand movements is fundamental for robotics, prosthetics, physiology and rehabilitation. The taxonomies of hand grasps that have been proposed in scientific literature so far are based on qualitative analyses of the movements and thus they are usually not quantitatively justified. Methods: This paper presents to the best of our knowledge the first quantitative taxonomy of hand grasps based on biomedical data measurements. The taxonomy is based on electromyography and kinematic data recorded from 40 healthy subjects performing 20 unique hand grasps. For each subject, a set of hierarchical trees are computed for several signal features. Afterwards, the trees are combined, first into modality-specific (i.e. muscular and kinematic) taxonomies of hand grasps and then into a general quantitative taxonomy of hand movements. The modality-specific taxonomies provide similar results despite describing different parameters of hand movements, one being muscular and the other kinematic. Results: The general taxonomy merges the kinematic and muscular description into a comprehensive hierarchical structure. The obtained results clarify what has been proposed in the literature so far and they partially confirm the qualitative parameters used to create previous taxonomies of hand grasps. According to the results, hand movements can be divided into five movement categories defined based on the overall grasp shape, finger positioning and muscular activation. Part of the results appears qualitatively in accordance with previous results describing kinematic hand grasping synergies. Conclusions: The taxonomy of hand grasps proposed in this paper clarifies with quantitative measurements what has been proposed in the field on a qualitative basis, thus having a potential impact on several scientific fields
    corecore