6,829 research outputs found

    A Hierarchical Approach to Computer-Aided Design of Quantum Circuits

    Get PDF
    A new approach to synthesis of permutation class of quantum logic circuits has been proposed in this paper. This approach produces better results than the previous approaches based on classical reversible logic and can be easier tuned to any particular quantum technology such as nuclear magnetic resonance (NMR). First we synthesize a library of permutation (pseudobinary) gates using a Computer-Aided-Design approach that links evolutionary and combinatorics approaches with human experience and creativity. Next the circuit is designed using these gates and standard 1*1 and 2*2 quantum gates and finally the optimizing tautological transforms are applied to the circuit, producing a sequence of quantum operations being close to operations practically realizable. These hierarchical stages can be compared to standard gate library design, generic logic synthesis and technology mapping stages of classical CAD systems, respectively. We use an informed genetic algorithm to evolve arbitrary quantum circuit specified by a (target) unitary matrix, specific encoding that reduces the time of calculating the resultant unitary matrices of chromosomes, and an evolutionary algorithm specialized to permutation circuits specified by truth tables. We outline interactive CAD approach in which the designer is a part of feedback loop in evolutionary program and the search is not for circuits of known specifications, but for any gates with high processing power and small cost for given constraints. In contrast to previous approaches, our methodology allows synthesis of both: small quantum circuits of arbitrary type (gates), and permutation class circuits that are well realizable in particular technology

    Tight Bounds on the Synthesis of 3-bit Reversible Circuits: NFT Library

    Full text link
    The reversible circuit synthesis problem can be reduced to permutation group. This allows Schreier-Sims Algorithm for the strong generating set-finding problem to be used to find tight bounds on the synthesis of 3-bit reversible circuits using the NFT library. The tight bounds include the maximum and minimum length of 3-bit reversible circuits, the maximum and minimum cost of 3-bit reversible circuits. The analysis shows better results than that found in the literature for the lower bound of the cost. The analysis also shows that there are 1960 universal reversible sub-libraries from the main NFT library.Comment: 18 pages. arXiv admin note: text overlap with arXiv:1101.438

    Synthesis and Optimization of Reversible Circuits - A Survey

    Full text link
    Reversible logic circuits have been historically motivated by theoretical research in low-power electronics as well as practical improvement of bit-manipulation transforms in cryptography and computer graphics. Recently, reversible circuits have attracted interest as components of quantum algorithms, as well as in photonic and nano-computing technologies where some switching devices offer no signal gain. Research in generating reversible logic distinguishes between circuit synthesis, post-synthesis optimization, and technology mapping. In this survey, we review algorithmic paradigms --- search-based, cycle-based, transformation-based, and BDD-based --- as well as specific algorithms for reversible synthesis, both exact and heuristic. We conclude the survey by outlining key open challenges in synthesis of reversible and quantum logic, as well as most common misconceptions.Comment: 34 pages, 15 figures, 2 table

    Depth-Optimized Reversible Circuit Synthesis

    Full text link
    In this paper, simultaneous reduction of circuit depth and synthesis cost of reversible circuits in quantum technologies with limited interaction is addressed. We developed a cycle-based synthesis algorithm which uses negative controls and limited distance between gate lines. To improve circuit depth, a new parallel structure is introduced in which before synthesis a set of disjoint cycles are extracted from the input specification and distributed into some subsets. The cycles of each subset are synthesized independently on different sets of ancillae. Accordingly, each disjoint set can be synthesized by different synthesis methods. Our analysis shows that the best worst-case synthesis cost of reversible circuits in the linear nearest neighbor architecture is improved by the proposed approach. Our experimental results reveal the effectiveness of the proposed approach to reduce cost and circuit depth for several benchmarks.Comment: 13 pages, 6 figures, 5 tables; Quantum Information Processing (QINP) journal, 201
    corecore