117 research outputs found

    Predictable multi-processor system on chip design for multimedia applications

    Get PDF
    The design of multimedia systems has become increasingly complex due to consumer requirements. Consumers demand the functionalities offered by a huge desktop from these systems. Many of these systems are mobile. Therefore, power consumption and size of these devices should be small. These systems are increasingly becoming multi-processor based (MPSoCs) for the reasons of power and performance. Applications execute on these systems in different combinations also known as use-cases. Applications may have different performance requirements in each use-case. Currently, verification of all these use-cases takes bulk of the design effort. There is a need for analysis based techniques so that the platforms have a predictable behaviour and in turn provide guarantees on performance without expending precious man hours on verification. In this dissertation, techniques and architectures have been developed to design and manage these multi-processor based systems efficiently. The dissertation presents predictable architectural components for MPSoCs, a Predictable MPSoC design strategy, automatic platform synthesis tool, a run-time system and an MPSoC simulation technique. The introduction of predictability helps in rapid design of MPSoC platforms. Chapter 1 of the thesis studies the trends in modern multimedia applications and processor architectures. The chapter further highlights the problems in the design of MPSoC platforms and emphasizes the need of predictable design techniques. Predictable design techniques require predictable application and architectural components. The chapter further elaborates on Synchronous Data Flow Graphs which are used to model the applications throughout this thesis. The chapter presents the architecture template used in this thesis and enlists the contributions of the thesis. One of the contributions of this thesis is the design of a predictable component called communication assist. Chapter 2 of the thesis describes the architecture of this communication assist. The communication assist presented in this thesis not only decouples the communication from computation but also provides timing guarantees. Based on this communication assist, an MPSoC platform generation technique has been presented that can design MPSoC platforms capable of satisfying the throughput constraints of multiple applications in all use-cases. The technique is presented in Chapter 3. The design strategy uses three simple steps for platform design. In the first step it finds the required number of processors. The second step minimizes the communication interconnect between the processors and the third step minimizes the communication memory requirement of the platform. Further in Chapter 4, a tool has been developed to generate CA-based platforms for FPGAs. The output of this tool can be used to synthesize platforms on real hardware with the help of FPGA synthesis tools. The applications executing on these platforms often exhibit dynamism e.g. variation in task execution times and change in application throughput requirements. Further, new applications may often be added by consumers at run-time. Resource managers have been presented in literature to handle such dynamic situations. However, the scalability of these resource managers becomes an issue with the increase in number of processors and applications. Chapter 5 presents distributed run-time resource management techniques. Two versions of distributed resource managers have been presented which are scalable with the number of applications and processors. MPSoC platforms for real-time applications are designed assuming worst-case task execution times. It is known that the difference between average-case and worst-case behaviour can be quite large. Therefore, knowing the average case performance is also important for the system designer, and software simulation is often employed to estimate this. However, simulation in software is slow and does not scale with the number of applications and processing elements. In Chapter 6, a fast and scalable simulation methodology is introduced that can simulate the execution of multiple applications on an MPSoC platform. It is based on parallel execution of SDF (Synchronous Data Flow) models of applications. The simulation methodology uses Parallel Discrete Event Simulation (PDES) primitives and it is termed as "Smart Conservative PDES". The methodology generates a parallel simulator which is synthesizable on FPGAs. The framework can also be used to model dynamic arbitration policies which are difficult to analyse using models. The generated platform is also useful in carrying out Design Space Exploration as shown in the thesis. Finally, Chapter 7 summarizes the main findings and (practical) implications of the studies described in previous chapters of this dissertation. Using the contributions mentioned in the thesis, a designer can design and implement predictable multiprocessor based systems capable of satisfying throughput constraints of multiple applications in given set of use-cases, and employ resource management strategies to deal with dynamism in the applications. The chapter also describes the main limitations of this dissertation and makes suggestions for future research

    Towards Efficient Resource Allocation for Embedded Systems

    Get PDF
    Das Hauptthema ist die dynamische Ressourcenverwaltung in eingebetteten Systemen, insbesondere die Verwaltung von Rechenzeit und Netzwerkverkehr auf einem MPSoC. Die Idee besteht darin, eine Pipeline für die Verarbeitung von Mobiler Kommunikation auf dem Chip dynamisch zu schedulen, um die Effizienz der Hardwareressourcen zu verbessern, ohne den Ressourcenverbrauch des dynamischen Schedulings dramatisch zu erhöhen. Sowohl Software- als auch Hardwaremodule werden auf Hotspots im Ressourcenverbrauch untersucht und optimiert, um diese zu entfernen. Da Applikationen im Bereich der Signalverarbeitung normalerweise mit Hilfe von SDF-Diagrammen beschrieben werden können, wird deren dynamisches Scheduling optimiert, um den Ressourcenverbrauch gegenüber dem üblicherweise verwendeten statischen Scheduling zu verbessern. Es wird ein hybrider dynamischer Scheduler vorgestellt, der die Vorteile von Processing-Networks und der Planung von Task-Graphen kombiniert. Es ermöglicht dem Scheduler, ein Gleichgewicht zwischen der Parallelisierung der Berechnung und der Zunahme des dynamischen Scheduling-Aufands optimal abzuwägen. Der resultierende dynamisch erstellte Schedule reduziert den Ressourcenverbrauch um etwa 50%, wobei die Laufzeit im Vergleich zu einem statischen Schedule nur um 20% erhöht wird. Zusätzlich wird ein verteilter dynamischer SDF-Scheduler vorgeschlagen, der das Scheduling in verschiedene Teile zerlegt, die dann zu einer Pipeline verbunden werden, um mehrere parallele Prozessoren einzubeziehen. Jeder Scheduling-Teil wird zu einem Cluster mit Load-Balancing erweitert, um die Anzahl der parallel laufenden Scheduling-Jobs weiter zu erhöhen. Auf diese Weise wird dem vorhandene Engpass bei dem dynamischen Scheduling eines zentralisierten Schedulers entgegengewirkt, sodass 7x mehr Prozessoren mit dem Pipelined-Clustered-Dynamic-Scheduler für eine typische Signalverarbeitungsanwendung verwendet werden können. Das neue dynamische Scheduling-System setzt das Vorhandensein von drei verschiedenen Kommunikationsmodi zwischen den Verarbeitungskernen voraus. Bei der Emulation auf Basis des häufig verwendeten RDMA-Protokolls treten Leistungsprobleme auf. Sehr gut kann RDMA für einmalige Punkt-zu-Punkt-Datenübertragungen verwendet werden, wie sie bei der Ausführung von Task-Graphen verwendet werden. Process-Networks verwenden normalerweise Datenströme mit hohem Volumen und hoher Bandbreite. Es wird eine FIFO-basierte Kommunikationslösung vorgestellt, die einen zyklischen Puffer sowohl im Sender als auch im Empfänger implementiert, um diesen Bedarf zu decken. Die Pufferbehandlung und die Datenübertragung zwischen ihnen erfolgen ausschließlich in Hardware, um den Software-Overhead aus der Anwendung zu entfernen. Die Implementierung verbessert die Zugriffsverwaltung mehrerer Nutzer auf flächen-effiziente Single-Port Speichermodule. Es werden 0,8 der theoretisch möglichen Bandbreite, die normalerweise nur mit flächenmäßig teureren Dual-Port-Speichern erreicht wird. Der dritte Kommunikationsmodus definiert eine einfache Message-Passing-Implementierung, die ohne einen Verbindungszustand auskommt. Dieser Modus wird für eine effiziente prozessübergreifende Kommunikation des verteilten Scheduling-Systems und der engen Ansteuerung der restlichen Prozessoren benötigt. Eine Flusskontrolle in Hardware stellt sicher, dass eine große Anzahl von Sendern Nachrichten an denselben Empfänger senden kann. Dabei wird garantiert, dass alle Nachrichten korrekt empfangen werden, ohne dass eine Verbindung hergestellt werden muss und die Nachrichtenlaufzeit gering bleibt. Die Arbeit konzentriert sich auf die Optimierung des Codesigns von Hardware und Software, um die kompromisslose Ressourceneffizienz der dynamischen SDF-Graphen-Planung zu erhöhen. Besonderes Augenmerk wird auf die Abhängigkeiten zwischen den Ebenen eines verteilten Scheduling-Systems gelegt, das auf der Verfügbarkeit spezifischer hardwarebeschleunigter Kommunikationsmethoden beruht.:1 Introduction 1.1 Motivation 1.2 The Multiprocessor System on Chip Architecture 1.3 Concrete MPSoC Architecture 1.4 Representing LTE/5G baseband processing as Static Data Flow 1.5 Compuation Stack 1.6 Performance Hotspots Addressed 1.7 State of the Art 1.8 Overview of the Work 2 Hybrid SDF Execution 2.1 Addressed Performance Hotspot 2.2 State of the Art 2.3 Static Data Flow Graphs 2.4 Runtime Environment 2.5 Overhead of Deloying Tasks to a MPSoC 2.6 Interpretation of SDF Graphs as Task Graphs 2.7 Interpreting SDF Graphs as Process Networks 2.8 Hybrid Interpretation 2.9 Graph Topology Considerations 2.10 Theoretic Impact of Hybrid Interpretation 2.11 Simulating Hybrid Execution 2.12 Pipeline SDF Graph Example 2.13 Random SDF Graphs 2.14 LTE-like SDF Graph 2.15 Key Lernings 3 Distribution of Management 3.1 Addressed Performance Hotspot 3.2 State of the Art 3.3 Revising Deployment Overhead 3.4 Distribution of Overhead 3.5 Impact of Management Distribution to Resource Utilization 3.6 Reconfigurability 3.7 Key Lernings 4 Sliced FIFO Hardware 4.1 Addressed Performance Hotspot 4.2 State of the Art 4.3 System Environment 4.4 Sliced Windowed FIFO buffer 4.5 Single FIFO Evaluation 4.6 Multiple FIFO Evalutaion 4.7 Hardware Implementation 4.8 Key Lernings 5 Message Passing Hardware 5.1 Addressed Performance Hotspot 5.2 State of the Art 5.3 Message Passing Regarded as Queueing 5.4 A Remote Direct Memory Access Based Implementation 5.5 Hardware Implementation Concept 5.6 Evalutation of Performance 5.7 Key Lernings 6 SummaryThe main topic is the dynamic resource allocation in embedded systems, especially the allocation of computing time and network traffic on an multi processor system on chip (MPSoC). The idea is to dynamically schedule a mobile communication signal processing pipeline on the chip to improve hardware resource efficiency while not dramatically improve resource consumption because of dynamic scheduling overhead. Both software and hardware modules are examined for resource consumption hotspots and optimized to remove them. Since signal processing can usually be described with the help of static data flow (SDF) graphs, the dynamic handling of those is optimized to improve resource consumption over the commonly used static scheduling approach. A hybrid dynamic scheduler is presented that combines benefits from both processing networks and task graph scheduling. It allows the scheduler to optimally balance parallelization of computation and addition of dynamic scheduling overhead. The resulting dynamically created schedule reduces resource consumption by about 50%, with a runtime increase of only 20% compared to a static schedule. Additionally, a distributed dynamic SDF scheduler is proposed that splits the scheduling into different parts, which are then connected to a scheduling pipeli ne to incorporate multiple parallel working processors. Each scheduling stage is reworked into a load-balanced cluster to increase the number of parallel scheduling jobs further. This way, the still existing dynamic scheduling bottleneck of a centralized scheduler is widened, allowing handling 7x more processors with the pipelined, clustered dynamic scheduler for a typical signal processing application. The presented dynamic scheduling system assumes the presence of three different communication modes between the processing cores. When emulated on top of the commonly used remote direct memory access (RDMA) protocol, performance issues are encountered. Firstly, RDMA can neatly be used for single-shot point-to-point data transfers, like used in task graph scheduling. Process networks usually make use of high-volume and high-bandwidth data streams. A first in first out (FIFO) communication solution is presented that implements a cyclic buffer on both sender and receiver to serve this need. The buffer handling and data transfer between them are done purely in hardware to remove software overhead from the application. The implementation improves the multi-user access to area-efficient single port on-chip memory modules. It achieves 0.8 of the theoretically possible bandwidth, usually only achieved with area expensive dual-port memories. The third communication mode defines a lightweight message passing (MP) implementation that is truly connectionless. It is needed for efficient inter-process communication of the distributed and clustered scheduling system and the worker processing units’ tight coupling. A hardware flow control assures that an arbitrary number of senders can spontaneously start sending messages to the same receiver. Yet, all messages are guaranteed to be correctly received while eliminating the need for connection establishment and keeping a low message delay. The work focuses on the hardware-software codesign optimization to increase the uncompromised resource efficiency of dynamic SDF graph scheduling. Special attention is paid to the inter-level dependencies in developing a distributed scheduling system, which relies on the availability of specific hardwareaccelerated communication methods.:1 Introduction 1.1 Motivation 1.2 The Multiprocessor System on Chip Architecture 1.3 Concrete MPSoC Architecture 1.4 Representing LTE/5G baseband processing as Static Data Flow 1.5 Compuation Stack 1.6 Performance Hotspots Addressed 1.7 State of the Art 1.8 Overview of the Work 2 Hybrid SDF Execution 2.1 Addressed Performance Hotspot 2.2 State of the Art 2.3 Static Data Flow Graphs 2.4 Runtime Environment 2.5 Overhead of Deloying Tasks to a MPSoC 2.6 Interpretation of SDF Graphs as Task Graphs 2.7 Interpreting SDF Graphs as Process Networks 2.8 Hybrid Interpretation 2.9 Graph Topology Considerations 2.10 Theoretic Impact of Hybrid Interpretation 2.11 Simulating Hybrid Execution 2.12 Pipeline SDF Graph Example 2.13 Random SDF Graphs 2.14 LTE-like SDF Graph 2.15 Key Lernings 3 Distribution of Management 3.1 Addressed Performance Hotspot 3.2 State of the Art 3.3 Revising Deployment Overhead 3.4 Distribution of Overhead 3.5 Impact of Management Distribution to Resource Utilization 3.6 Reconfigurability 3.7 Key Lernings 4 Sliced FIFO Hardware 4.1 Addressed Performance Hotspot 4.2 State of the Art 4.3 System Environment 4.4 Sliced Windowed FIFO buffer 4.5 Single FIFO Evaluation 4.6 Multiple FIFO Evalutaion 4.7 Hardware Implementation 4.8 Key Lernings 5 Message Passing Hardware 5.1 Addressed Performance Hotspot 5.2 State of the Art 5.3 Message Passing Regarded as Queueing 5.4 A Remote Direct Memory Access Based Implementation 5.5 Hardware Implementation Concept 5.6 Evalutation of Performance 5.7 Key Lernings 6 Summar

    Proceedings of the 5th International Workshop on Reconfigurable Communication-centric Systems on Chip 2010 - ReCoSoC\u2710 - May 17-19, 2010 Karlsruhe, Germany. (KIT Scientific Reports ; 7551)

    Get PDF
    ReCoSoC is intended to be a periodic annual meeting to expose and discuss gathered expertise as well as state of the art research around SoC related topics through plenary invited papers and posters. The workshop aims to provide a prospective view of tomorrow\u27s challenges in the multibillion transistor era, taking into account the emerging techniques and architectures exploring the synergy between flexible on-chip communication and system reconfigurability

    Synchronization of tasks in multiprocessor systems-on-chip

    Get PDF
    Tese de mestrado integrado. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 201

    A Study of Multiprocessor Systems using the Picoblaze 8-bit Microcontroller Implemented on Field Programmable Gate Arrays

    Get PDF
    As Field Programmable Gate Arrays (FPGAs) are becoming more capable of implementing complex logic circuits, designers are increasingly choosing them over traditional microprocessor-based systems for implementing digital controllers and digital signal processing applications. Indeed, as FPGAs are being built using state-of-the-art deep submicron CMOS processes, the increased amount of logic and memory resources allows such FPGA-based implementations to compete in terms of speed, complexity, and power dissipation with most custom-built chips, but at a fraction of the development costs. The modern FPGA is now capable of implementing multiple instances of configurable processors that are completely specified by a high-level descriptor language. Such arrays of soft processor cores have opened up new design possibilities that include complex embedded systems applications that were previously implemented by custom multiprocessor chips. As the FPGA-based multiprocessor system is completely configurable by the user, it can be optimized for speed and power dissipation to fit a given application. The goal of this thesis is to investigate design methods for implementing an array of soft processor cores using the Xilinx FPGA-based 8-bit microcontroller known as PicoBlaze. While development tools exist for the larger 32-bit processor from Xilinx known as MicroBlaze, no such resources are currently available for the PicoBlaze microcontroller. PicoBlaze benefits in applications that requires only less data bits (less than 8 bits). For example, consider the gene sequencing or DNA sequencing in which the processing requires only 2 to 5 bits. In such an application, PicoBlaze can be a simple processor to produce the results. Also, the PicoBlaze unit offers a finer level of granularity and hence consumes fewer resources than the larger 32-bit MicroBlaze processor. Hence, the former will find applications in embedded systems requiring a complex design to be partitioned over several processors but where only an 8-bit datapath is required

    Embedded computing systems design: architectural and application perspectives

    Get PDF
    Questo elaborato affronta varie problematiche legate alla progettazione e all'implementazione dei moderni sistemi embedded di computing, ponendo in rilevo, e talvolta in contrapposizione, le sfide che emergono all'avanzare della tecnologia ed i requisiti che invece emergono a livello applicativo, derivanti dalle necessità degli utenti finali e dai trend di mercato. La discussione sarà articolata tenendo conto di due punti di vista: la progettazione hardware e la loro applicazione a livello di sistema. A livello hardware saranno affrontati nel dettaglio i problemi di interconnettività on-chip. Aspetto che riguarda la parallelizzazione del calcolo, ma anche l'integrazione di funzionalità eterogenee. Sarà quindi discussa un'architettura d'interconnessione denominata Network-on-Chip (NoC). La soluzione proposta è in grado di supportare funzionalità avanzate di networking direttamente in hardware, consentendo tuttavia di raggiungere sempre un compromesso ottimale tra prestazioni in termini di traffico e requisiti di implementazioni a seconda dell'applicazione specifica. Nella discussione di questa tematica, verrà posto l'accento sul problema della configurabilità dei blocchi che compongono una NoC. Quello della configurabilità, è un problema sempre più sentito nella progettazione dei sistemi complessi, nei quali si cerca di sviluppare delle funzionalità, anche molto evolute, ma che siano semplicemente riutilizzabili. A tale scopo sarà introdotta una nuova metodologia, denominata Metacoding che consiste nell'astrarre i problemi di configurabilità attraverso linguaggi di programmazione di alto livello. Sulla base del metacoding verrà anche proposto un flusso di design automatico in grado di semplificare la progettazione e la configurazione di una NoC da parte del designer di rete. Come anticipato, la discussione si sposterà poi a livello di sistema, per affrontare la progettazione di tali sistemi dal punto di vista applicativo, focalizzando l'attenzione in particolare sulle applicazioni di monitoraggio remoto. A tal riguardo saranno studiati nel dettaglio tutti gli aspetti che riguardano la progettazione di un sistema per il monitoraggio di pazienti affetti da scompenso cardiaco cronico. Si partirà dalla definizione dei requisiti, che, come spesso accade a questo livello, derivano principalmente dai bisogni dell'utente finale, nel nostro caso medici e pazienti. Verranno discusse le problematiche di acquisizione, elaborazione e gestione delle misure. Il sistema proposto introduce vari aspetti innovativi tra i quali il concetto di protocollo operativo e l'elevata interoperabilità offerta. In ultima analisi, verranno riportati i risultati relativi alla sperimentazione del sistema implementato. Infine, il tema del monitoraggio remoto sarà concluso con lo studio delle reti di distribuzione elettrica intelligenti: le Smart Grid, cercando di fare uno studio dello stato dell'arte del settore, proponendo un'architettura di Home Area Network (HAN) e suggerendone una possibile implementazione attraverso Commercial Off the Shelf (COTS)

    Network Interface Design for Network-on-Chip

    Get PDF
    In the culture of globalized integrated circuit (IC, a.k.a chip) production, the use of Intellectual Property (IP) cores, computer aided design tools (CAD) and testing services from un-trusted vendors are prevalent to reduce the time to market. Unfortunately, the globalized business model potentially creates opportunities for hardware tampering and modification from adversary, and this tampering is known as hardware Trojan (HT). Network-on-chip (NoC) has emerged as an efficient on-chip communication infrastructure. In this work, the security aspects of NoC network interface (NI), one of the most critical components in NoC will be investigated and presented. Particularly, the NI design, hardware attack models and countermeasures for NI in a NoC system are explored. An OCP compatible NI is implemented in an IBM0.18ìm CMOS technology. The synthesis results are presented and compared with existing literature. Second, comprehensive hardware attack models targeted for NI are presented from system level to circuit level. The impact of hardware Trojans on NoC functionality and performance are evaluated. Finally, a countermeasure method is proposed to address the hardware attacks in NIs
    corecore