5,733 research outputs found

    A cut finite element method for coupled bulk-surface problems on time-dependent domains

    Full text link
    In this contribution we present a new computational method for coupled bulk-surface problems on time-dependent domains. The method is based on a space-time formulation using discontinuous piecewise linear elements in time and continuous piecewise linear elements in space on a fixed background mesh. The domain is represented using a piecewise linear level set function on the background mesh and a cut finite element method is used to discretize the bulk and surface problems. In the cut finite element method the bilinear forms associated with the weak formulation of the problem are directly evaluated on the bulk domain and the surface defined by the level set, essentially using the restrictions of the piecewise linear functions to the computational domain. In addition a stabilization term is added to stabilize convection as well as the resulting algebraic system that is solved in each time step. We show in numerical examples that the resulting method is accurate and stable and results in well conditioned algebraic systems independent of the position of the interface relative to the background mesh

    Phase-field modeling droplet dynamics with soluble surfactants

    Get PDF
    Using lattice Boltzmann approach, a phase-field model is proposed for simulating droplet motion with soluble surfactants. The model can recover the Langmuir and Frumkin adsorption isotherms in equilibrium. From the equilibrium equation of state, we can determine the interfacial tension lowering scale according to the interface surfactant concentration. The model is able to capture short-time and long-time adsorption dynamics of surfactants. We apply the model to examine the effect of soluble surfactants on droplet deformation, breakup and coalescence. The increase of surfactant concentration and attractive lateral interaction can enhance droplet deformation, promote droplet breakup, and inhibit droplet coalescence. We also demonstrate that the Marangoni stresses can reduce the interface mobility and slow down the film drainage process, thus acting as an additional repulsive force to prevent the droplet coalescence

    Phase field modelling of surfactants in multi-phase flow

    Get PDF
    A diffuse interface model for surfactants in multi-phase flow with three or more fluids is derived. A system of Cahn-Hilliard equations is coupled with a Navier-Stokes system and an advection-diffusion equation for the surfactant ensuring thermodynamic consistency. By an asymptotic analysis the model can be related to a moving boundary problem in the sharp interface limit, which is derived from first principles. Results from numerical simulations support the theoretical findings. The main novelties are centred around the conditions in the triple junctions where three fluids meet. Specifically the case of local chemical equilibrium with respect to the surfactant is considered, which allows for interfacial surfactant flow through the triple junctions

    A trace finite element method for a class of coupled bulk-interface transport problems

    Get PDF
    In this paper we study a system of advection-diffusion equations in a bulk domain coupled to an advection-diffusion equation on an embedded surface. Such systems of coupled partial differential equations arise in, for example, the modeling of transport and diffusion of surfactants in two-phase flows. The model considered here accounts for adsorption-desorption of the surfactants at a sharp interface between two fluids and their transport and diffusion in both fluid phases and along the interface. The paper gives a well-posedness analysis for the system of bulk-surface equations and introduces a finite element method for its numerical solution. The finite element method is unfitted, i.e., the mesh is not aligned to the interface. The method is based on taking traces of a standard finite element space both on the bulk domains and the embedded surface. The numerical approach allows an implicit definition of the surface as the zero level of a level-set function. Optimal order error estimates are proved for the finite element method both in the bulk-surface energy norm and the L2L^2-norm. The analysis is not restricted to linear finite elements and a piecewise planar reconstruction of the surface, but also covers the discretization with higher order elements and a higher order surface reconstruction
    corecore