55,393 research outputs found

    Numerical simulations of 3D flows with moving contact lines

    Get PDF
    Flows with moving contact lines are encountered in many applications involving wetting phenomena such acid gas treatment with contacting devices, film coatings, and microfluidics. Numerically simulating flows with moving contact lines under realistic conditions is a computational challenge, because a large range of length scales is involved, and the fluid/fluid interface is generally strongly curved close to the contact line. This is due to the different physical behavior in the near vicinity of a moving contact line: a conventional no-slip formulation would lead to a singularity in the wall stress at a moving contact line. Several models have been proposed to account for the physical behavior in the near vicinity of contact lines ? herein we adopt a slip formulation, which involves a slip length parameter that is typically estimated to be nanometric, which is much smaller than the dimensions of an entire flow, even for a millimetric droplet. Direct numerical simulations (DNS) of such flows wherein the entire flow is resolved not being feasible, it is proposed here to numerically resolve the large-scale flow and part of the intermediate-scale flow whilst using a subgrid-scale model, which originates from hydrodynamic theories, to represent the unresolved part of the flow. We have developed a methodology for such large-scale simulations in 3D in the context of level-set methods. Results will be presented first for axisymmetric droplet spreading (simulated in 3D) in a regime dominated by viscous and capillary effects, with a comparison against results of DNS available in the literature. This is followed by results for axisymmetric droplet spreading (simulated in 3D) for more rapid flows, wherein inertial effects enter the contact-line region, for which excellent agreement with experimental data was obtained, both qualitatively and quantitatively. A second part of the work investigates whether such a model can be used for more complex evolution of contact lines, including effects of contact-angle hysteresis in 3D, which are also represented by our computational method. For this purpose, we consider next three-dimensional drops sliding down an inclined plane; numerical results will be demonstrated to be in good agreement with experiments. The subgrid-scale model used herein is restricted to flows with moving contact lines on planar substrates with small gravity effects compared to capillary effects. Further complexities may now be considered, involving heterogeneous substrates or higher Bond numbers, which calls for further DNS and theoretical development

    Transition in a numerical model of contact line dynamics and forced dewetting

    Full text link
    We investigate the transition to a Landau-Levich-Derjaguin film in forced dewetting using a quadtree adaptive solution to the Navier-Stokes equations with surface tension. We use a discretization of the capillary forces near the receding contact line that yields an equilibrium for a specified contact angle θΔ\theta_\Delta called the numerical contact angle. Despite the well-known contact line singularity, dynamic simulations can proceed without any explicit additional numerical procedure. We investigate angles from 15∘15^\circ to 110∘110^\circ and capillary numbers from 0.000850.00085 to 0.20.2 where the mesh size Δ\Delta is varied in the range of 0.00350.0035 to 0.060.06 of the capillary length lcl_c. To interpret the results, we use Cox's theory which involves a microscopic distance rmr_m and a microscopic angle θe\theta_e. In the numerical case, the equivalent of θe\theta_e is the angle θΔ\theta_\Delta and we find that Cox's theory also applies. We introduce the scaling factor or gauge function ϕ\phi so that rm=Δ/ϕr_m = \Delta/\phi and estimate this gauge function by comparing our numerics to Cox's theory. The comparison provides a direct assessment of the agreement of the numerics with Cox's theory and reveals a critical feature of the numerical treatment of contact line dynamics: agreement is poor at small angles while it is better at large angles. This scaling factor is shown to depend only on θΔ\theta_\Delta and the viscosity ratio qq. In the case of small θe\theta_e, we use the prediction by Eggers [Phys. Rev. Lett., vol. 93, pp 094502, 2004] of the critical capillary number for the Landau-Levich-Derjaguin forced dewetting transition. We generalize this prediction to large θe\theta_e and arbitrary qq and express the critical capillary number as a function of θe\theta_e and rmr_m. An analogy can be drawn between rmr_m and the numerical slip length.Comment: This version of the paper includes the corrections indicated in Ref. [1

    RAM: A Relativistic Adaptive Mesh Refinement Hydrodynamics Code

    Full text link
    We have developed a new computer code, RAM, to solve the conservative equations of special relativistic hydrodynamics (SRHD) using adaptive mesh refinement (AMR) on parallel computers. We have implemented a characteristic-wise, finite difference, weighted essentially non-oscillatory (WENO) scheme using the full characteristic decomposition of the SRHD equations to achieve fifth-order accuracy in space. For time integration we use the method of lines with a third-order total variation diminishing (TVD) Runge-Kutta scheme. We have also implemented fourth and fifth order Runge-Kutta time integration schemes for comparison. The implementation of AMR and parallelization is based on the FLASH code. RAM is modular and includes the capability to easily swap hydrodynamics solvers, reconstruction methods and physics modules. In addition to WENO we have implemented a finite volume module with the piecewise parabolic method (PPM) for reconstruction and the modified Marquina approximate Riemann solver to work with TVD Runge-Kutta time integration. We examine the difficulty of accurately simulating shear flows in numerical relativistic hydrodynamics codes. We show that under-resolved simulations of simple test problems with transverse velocity components produce incorrect results and demonstrate the ability of RAM to correctly solve these problems. RAM has been tested in one, two and three dimensions and in Cartesian, cylindrical and spherical coordinates. We have demonstrated fifth-order accuracy for WENO in one and two dimensions and performed detailed comparison with other schemes for which we show significantly lower convergence rates. Extensive testing is presented demonstrating the ability of RAM to address challenging open questions in relativistic astrophysics.Comment: ApJS in press, 21 pages including 18 figures (6 color figures

    Runup and rundown generated by three-dimensional sliding masses

    Get PDF
    To study the waves and runup/rundown generated by a sliding mass, a numerical simulation model, based on the large-eddy-simulation (LES) approach, was developed. The Smagorinsky subgrid scale model was employed to provide turbulence dissipation and the volume of fluid (VOF) method was used to track the free surface and shoreline movements. A numerical algorithm for describing the motion of the sliding mass was also implemented. To validate the numerical model, we conducted a set of large-scale experiments in a wave tank of 104m long, 3.7m wide and 4.6m deep with a plane slope (1:2) located at one end of the tank. A freely sliding wedge with two orientations and a hemisphere were used to represent landslides. Their initial positions ranged from totally aerial to fully submerged, and the slide mass was also varied over a wide range. The slides were instrumented to provide position and velocity time histories. The time-histories of water surface and the runup at a number of locations were measured. Comparisons between the numerical results and experimental data are presented only for wedge shape slides. Very good agreement is shown for the time histories of runup and generated waves. The detailed three-dimensional complex flow patterns, free surface and shoreline deformations are further illustrated by the numerical results. The maximum runup heights are presented as a function of the initial elevation and the specific weight of the slide. The effects of the wave tank width on the maximum runup are also discussed

    A mesoscopic model for microscale hydrodynamics and interfacial phenomena: Slip, films, and contact angle hysteresis

    Full text link
    We present a model based on the lattice Boltzmann equation that is suitable for the simulation of dynamic wetting. The model is capable of exhibiting fundamental interfacial phenomena such as weak adsorption of fluid on the solid substrate and the presence of a thin surface film within which a disjoining pressure acts. Dynamics in this surface film, tightly coupled with hydrodynamics in the fluid bulk, determine macroscopic properties of primary interest: the hydrodynamic slip; the equilibrium contact angle; and the static and dynamic hysteresis of the contact angles. The pseudo- potentials employed for fluid-solid interactions are composed of a repulsive core and an attractive tail that can be independently adjusted. This enables effective modification of the functional form of the disjoining pressure so that one can vary the static and dynamic hysteresis on surfaces that exhibit the same equilibrium contact angle. The modeled solid-fluid interface is diffuse, represented by a wall probability function which ultimately controls the momentum exchange between solid and fluid phases. This approach allows us to effectively vary the slip length for a given wettability (i.e. the static contact angle) of the solid substrate

    Molecular hydrodynamics of the moving contact line in two-phase immiscible flows

    Full text link
    The ``no-slip'' boundary condition, i.e., zero fluid velocity relative to the solid at the fluid-solid interface, has been very successful in describing many macroscopic flows. A problem of principle arises when the no-slip boundary condition is used to model the hydrodynamics of immiscible-fluid displacement in the vicinity of the moving contact line, where the interface separating two immiscible fluids intersects the solid wall. Decades ago it was already known that the moving contact line is incompatible with the no-slip boundary condition, since the latter would imply infinite dissipation due to a non-integrable singularity in the stress near the contact line. In this paper we first present an introductory review of the problem. We then present a detailed review of our recent results on the contact-line motion in immiscible two-phase flow, from MD simulations to continuum hydrodynamics calculations. Through extensive MD studies and detailed analysis, we have uncovered the slip boundary condition governing the moving contact line, denoted the generalized Navier boundary condition. We have used this discovery to formulate a continuum hydrodynamic model whose predictions are in remarkable quantitative agreement with the MD simulation results at the molecular level. These results serve to affirm the validity of the generalized Navier boundary condition, as well as to open up the possibility of continuum hydrodynamic calculations of immiscible flows that are physically meaningful at the molecular level.Comment: 36 pages with 33 figure
    • …
    corecore