11,730 research outputs found

    Delay-dependent criterion for exponential stability analysis of neural networks with time-varying delays

    Get PDF
    This note investigates the problem of exponential stability of neural networks with time-varying delays. To derive a less conservative stability condition, a novel augmented Lyapunov-Krasovskii functional (LKF) which includes triple and quadruple-integral terms is employed. In order to reduce the complexity of the stability test, the convex combination method is utilized to derive an improved delay dependent stability criterion in the form of linear matrix inequalities (LMIs). The superiority of the proposed approach is demonstrated by two comparative examples

    Stability Analysis for Markovian Jump Neutral Systems with Mixed Delays and Partially Known Transition Rates

    Get PDF
    The delay-dependent stability problem is studied for Markovian jump neutral systems with partial information on transition probabilities, and the considered delays are mixed and model dependent. By constructing the new stochastic Lyapunov-Krasovskii functional, which combined the introduced free matrices with the analysis technique of matrix inequalities, a sufficient condition for the systems with fully known transition rates is firstly established. Then, making full use of the transition rate matrix, the results are obtained for the other case, and the uncertain neutral Markovian jump system with incomplete transition rates is also considered. Finally, to show the validity of the obtained results, three numerical examples are provided

    Delay-dependent stabilization of stochastic interval delay systems with nonlinear disturbances

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link below - Copyright 2007 Elsevier Ltd.In this paper, a delay-dependent approach is developed to deal with the robust stabilization problem for a class of stochastic time-delay interval systems with nonlinear disturbances. The system matrices are assumed to be uncertain within given intervals, the time delays appear in both the system states and the nonlinear disturbances, and the stochastic perturbation is in the form of a Brownian motion. The purpose of the addressed stochastic stabilization problem is to design a memoryless state feedback controller such that, for all admissible interval uncertainties and nonlinear disturbances, the closed-loop system is asymptotically stable in the mean square, where the stability criteria are dependent on the length of the time delay and therefore less conservative. By using ItƓ's differential formula and the Lyapunov stability theory, sufficient conditions are first derived for ensuring the stability of the stochastic interval delay systems. Then, the controller gain is characterized in terms of the solution to a delay-dependent linear matrix inequality (LMI), which can be easily solved by using available software packages. A numerical example is exploited to demonstrate the effectiveness of the proposed design procedure.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Nuffield Foundation of the UK under Grant NAL/00630/G, and the Alexander von Humboldt Foundation of Germany

    New Robust Exponential Stability Criterion for Uncertain Neutral Systems with Discrete and Distributed Time-Varying Delays and Nonlinear Perturbations

    Get PDF
    We investigate the problem of robust exponential stability for uncertain neutral systems with discrete and distributed time-varying delays and nonlinear perturbations. Based on the combination of descriptor model transformation, decomposition technique of coefficient matrix, and utilization of zero equation and new Lyapunov functional, sufficient conditions for robust exponential stability are obtained and formulated in terms of linear matrix inequalities (LMIs). The new stability conditions are less conservative and more general than some existing results

    Finite-time passivity for neutral-type neural networks with time-varying delays ā€“ via auxiliary function-based integral inequalities

    Get PDF
    In this paper, we investigated the problem of the finite-time boundedness and finitetime passivity for neural networks with time-varying delays. A triple, quadrable and five integral terms with the delay information are introduced in the new Lyapunovā€“Krasovskii functional (LKF). Based on the auxiliary integral inequality, Writinger integral inequality and Jensenā€™s inequality, several sufficient conditions are derived. Finally, numerical examples are provided to verify the effectiveness of the proposed criterion. There results are compared with the existing results.&nbsp

    Further results on exponential estimates of markovian jump systems with mode-dependent time-varying delays

    Get PDF
    This technical note studies the problem of exponential estimates for Markovian jump systems with mode-dependent interval time-varying delays. A novel LyapunovKrasovskii functional (LKF) is constructed with the idea of delay partitioning, and a less conservative exponential estimate criterion is obtained based on the new LKF. Illustrative examples are provided to show the effectiveness of the proposed results. Ā© 2010 IEEE.published_or_final_versio
    • ā€¦
    corecore