1,405 research outputs found

    Neuron Segmentation Using Deep Complete Bipartite Networks

    Full text link
    In this paper, we consider the problem of automatically segmenting neuronal cells in dual-color confocal microscopy images. This problem is a key task in various quantitative analysis applications in neuroscience, such as tracing cell genesis in Danio rerio (zebrafish) brains. Deep learning, especially using fully convolutional networks (FCN), has profoundly changed segmentation research in biomedical imaging. We face two major challenges in this problem. First, neuronal cells may form dense clusters, making it difficult to correctly identify all individual cells (even to human experts). Consequently, segmentation results of the known FCN-type models are not accurate enough. Second, pixel-wise ground truth is difficult to obtain. Only a limited amount of approximate instance-wise annotation can be collected, which makes the training of FCN models quite cumbersome. We propose a new FCN-type deep learning model, called deep complete bipartite networks (CB-Net), and a new scheme for leveraging approximate instance-wise annotation to train our pixel-wise prediction model. Evaluated using seven real datasets, our proposed new CB-Net model outperforms the state-of-the-art FCN models and produces neuron segmentation results of remarkable qualityComment: miccai 201

    Improving Sequence-to-Sequence Learning via Optimal Transport

    Full text link
    Sequence-to-sequence models are commonly trained via maximum likelihood estimation (MLE). However, standard MLE training considers a word-level objective, predicting the next word given the previous ground-truth partial sentence. This procedure focuses on modeling local syntactic patterns, and may fail to capture long-range semantic structure. We present a novel solution to alleviate these issues. Our approach imposes global sequence-level guidance via new supervision based on optimal transport, enabling the overall characterization and preservation of semantic features. We further show that this method can be understood as a Wasserstein gradient flow trying to match our model to the ground truth sequence distribution. Extensive experiments are conducted to validate the utility of the proposed approach, showing consistent improvements over a wide variety of NLP tasks, including machine translation, abstractive text summarization, and image captioning

    Associative content-addressable networks with exponentially many robust stable states

    Full text link
    The brain must robustly store a large number of memories, corresponding to the many events encountered over a lifetime. However, the number of memory states in existing neural network models either grows weakly with network size or recall fails catastrophically with vanishingly little noise. We construct an associative content-addressable memory with exponentially many stable states and robust error-correction. The network possesses expander graph connectivity on a restricted Boltzmann machine architecture. The expansion property allows simple neural network dynamics to perform at par with modern error-correcting codes. Appropriate networks can be constructed with sparse random connections, glomerular nodes, and associative learning using low dynamic-range weights. Thus, sparse quasi-random structures---characteristic of important error-correcting codes---may provide for high-performance computation in artificial neural networks and the brain.Comment: 42 pages, 8 figure

    Undirected Graphical Models as Approximate Posteriors

    Full text link
    The representation of the approximate posterior is a critical aspect of effective variational autoencoders (VAEs). Poor choices for the approximate posterior have a detrimental impact on the generative performance of VAEs due to the mismatch with the true posterior. We extend the class of posterior models that may be learned by using undirected graphical models. We develop an efficient method to train undirected approximate posteriors by showing that the gradient of the training objective with respect to the parameters of the undirected posterior can be computed by backpropagation through Markov chain Monte Carlo updates. We apply these gradient estimators for training discrete VAEs with Boltzmann machines as approximate posteriors and demonstrate that undirected models outperform previous results obtained using directed graphical models. Our implementation is available at https://github.com/QuadrantAI/dvaess .Comment: Accepted to ICML 202

    Convolutional Bipartite Attractor Networks

    Full text link
    In human perception and cognition, a fundamental operation that brains perform is interpretation: constructing coherent neural states from noisy, incomplete, and intrinsically ambiguous evidence. The problem of interpretation is well matched to an early and often overlooked architecture, the attractor network---a recurrent neural net that performs constraint satisfaction, imputation of missing features, and clean up of noisy data via energy minimization dynamics. We revisit attractor nets in light of modern deep learning methods and propose a convolutional bipartite architecture with a novel training loss, activation function, and connectivity constraints. We tackle larger problems than have been previously explored with attractor nets and demonstrate their potential for image completion and super-resolution. We argue that this architecture is better motivated than ever-deeper feedforward models and is a viable alternative to more costly sampling-based generative methods on a range of supervised and unsupervised tasks

    Anomaly Detection and Correction in Large Labeled Bipartite Graphs

    Full text link
    Binary classification problems can be naturally modeled as bipartite graphs, where we attempt to classify right nodes based on their left adjacencies. We consider the case of labeled bipartite graphs in which some labels and edges are not trustworthy. Our goal is to reduce noise by identifying and fixing these labels and edges. We first propose a geometric technique for generating random graph instances with untrustworthy labels and analyze the resulting graph properties. We focus on generating graphs which reflect real-world data, where degree and label frequencies follow power law distributions. We review several algorithms for the problem of detection and correction, proposing novel extensions and making observations specific to the bipartite case. These algorithms range from math programming algorithms to discrete combinatorial algorithms to Bayesian approximation algorithms to machine learning algorithms. We compare the performance of all these algorithms using several metrics and, based on our observations, identify the relative strengths and weaknesses of each individual algorithm.Comment: 36 pages, 4 figure

    Speed/accuracy trade-offs for modern convolutional object detectors

    Full text link
    The goal of this paper is to serve as a guide for selecting a detection architecture that achieves the right speed/memory/accuracy balance for a given application and platform. To this end, we investigate various ways to trade accuracy for speed and memory usage in modern convolutional object detection systems. A number of successful systems have been proposed in recent years, but apples-to-apples comparisons are difficult due to different base feature extractors (e.g., VGG, Residual Networks), different default image resolutions, as well as different hardware and software platforms. We present a unified implementation of the Faster R-CNN [Ren et al., 2015], R-FCN [Dai et al., 2016] and SSD [Liu et al., 2015] systems, which we view as "meta-architectures" and trace out the speed/accuracy trade-off curve created by using alternative feature extractors and varying other critical parameters such as image size within each of these meta-architectures. On one extreme end of this spectrum where speed and memory are critical, we present a detector that achieves real time speeds and can be deployed on a mobile device. On the opposite end in which accuracy is critical, we present a detector that achieves state-of-the-art performance measured on the COCO detection task.Comment: Accepted to CVPR 201

    Deep Neural Networks

    Full text link
    Deep Neural Networks (DNNs) are universal function approximators providing state-of- the-art solutions on wide range of applications. Common perceptual tasks such as speech recognition, image classification, and object tracking are now commonly tackled via DNNs. Some fundamental problems remain: (1) the lack of a mathematical framework providing an explicit and interpretable input-output formula for any topology, (2) quantification of DNNs stability regarding adversarial examples (i.e. modified inputs fooling DNN predictions whilst undetectable to humans), (3) absence of generalization guarantees and controllable behaviors for ambiguous patterns, (4) leverage unlabeled data to apply DNNs to domains where expert labeling is scarce as in the medical field. Answering those points would provide theoretical perspectives for further developments based on a common ground. Furthermore, DNNs are now deployed in tremendous societal applications, pushing the need to fill this theoretical gap to ensure control, reliability, and interpretability.Comment: Technical Repor

    Probabilistic Semantic Retrieval for Surveillance Videos with Activity Graphs

    Full text link
    We present a novel framework for finding complex activities matching user-described queries in cluttered surveillance videos. The wide diversity of queries coupled with unavailability of annotated activity data limits our ability to train activity models. To bridge the semantic gap we propose to let users describe an activity as a semantic graph with object attributes and inter-object relationships associated with nodes and edges, respectively. We learn node/edge-level visual predictors during training and, at test-time, propose to retrieve activity by identifying likely locations that match the semantic graph. We formulate a novel CRF based probabilistic activity localization objective that accounts for mis-detections, mis-classifications and track-losses, and outputs a likelihood score for a candidate grounded location of the query in the video. We seek groundings that maximize overall precision and recall. To handle the combinatorial search over all high-probability groundings, we propose a highest precision subgraph matching algorithm. Our method outperforms existing retrieval methods on benchmarked datasets.Comment: 1520-9210 (c) 2018 IEEE. This paper has been accepted by IEEE Transactions on Multimedia. Print ISSN: 1520-9210. Online ISSN: 1941-0077. Preprint link is https://ieeexplore.ieee.org/document/8438958

    On Regret-Optimal Learning in Decentralized Multi-player Multi-armed Bandits

    Full text link
    We consider the problem of learning in single-player and multiplayer multiarmed bandit models. Bandit problems are classes of online learning problems that capture exploration versus exploitation tradeoffs. In a multiarmed bandit model, players can pick among many arms, and each play of an arm generates an i.i.d. reward from an unknown distribution. The objective is to design a policy that maximizes the expected reward over a time horizon for a single player setting and the sum of expected rewards for the multiplayer setting. In the multiplayer setting, arms may give different rewards to different players. There is no separate channel for coordination among the players. Any attempt at communication is costly and adds to regret. We propose two decentralizable policies, E3\tt E^3 (E\tt E-cubed\tt cubed) and E3\tt E^3-TS\tt TS, that can be used in both single player and multiplayer settings. These policies are shown to yield expected regret that grows at most as O(log1+ϵT\log^{1+\epsilon} T). It is well known that logT\log T is the lower bound on the rate of growth of regret even in a centralized case. The proposed algorithms improve on prior work where regret grew at O(log2T\log^2 T). More fundamentally, these policies address the question of additional cost incurred in decentralized online learning, suggesting that there is at most an ϵ\epsilon-factor cost in terms of order of regret. This solves a problem of relevance in many domains and had been open for a while
    corecore