26,389 research outputs found

    Linear motor motion control using a learning feedforward controller

    Get PDF
    The design and realization of an online learning motion controller for a linear motor is presented, and its usefulness is evaluated. The controller consists of two components: (1) a model-based feedback component, and (2) a learning feedforward component. The feedback component is designed on the basis of a simple second-order linear model, which is known to have structural errors. In the design, an emphasis is placed on robustness. The learning feedforward component is a neural-network-based controller, comprised of a one-hidden-layer structure with second-order B-spline basis functions. Simulations and experimental evaluations show that, with little effort, a high-performance motion system can be obtained with this approach

    A New Data Source for Inverse Dynamics Learning

    Full text link
    Modern robotics is gravitating toward increasingly collaborative human robot interaction. Tools such as acceleration policies can naturally support the realization of reactive, adaptive, and compliant robots. These tools require us to model the system dynamics accurately -- a difficult task. The fundamental problem remains that simulation and reality diverge--we do not know how to accurately change a robot's state. Thus, recent research on improving inverse dynamics models has been focused on making use of machine learning techniques. Traditional learning techniques train on the actual realized accelerations, instead of the policy's desired accelerations, which is an indirect data source. Here we show how an additional training signal -- measured at the desired accelerations -- can be derived from a feedback control signal. This effectively creates a second data source for learning inverse dynamics models. Furthermore, we show how both the traditional and this new data source, can be used to train task-specific models of the inverse dynamics, when used independently or combined. We analyze the use of both data sources in simulation and demonstrate its effectiveness on a real-world robotic platform. We show that our system incrementally improves the learned inverse dynamics model, and when using both data sources combined converges more consistently and faster.Comment: IROS 201

    Switched predictive control design for optimal wet-clutch engagement

    Get PDF
    Modeling of hydraulic clutch transmissions is far from straightforward due to their nonlinear hybrid dynamics, i.e. switching between three dynamic phases. In this paper we identify a local linear model only for the constrained first phase, based on which a predictive controller is used to track a suitable engagement signal. The robustness of this controller in the latter two phases is guaranteed by making the constraints inactive and pre-tuning the control parameters based on its closed loop formulation and applying robust stability theorem. This controller is then implemented in real-time on a wet-clutch test setup and is shown to achieve optimal engagement

    Pattern Generation for Walking on Slippery Terrains

    Full text link
    In this paper, we extend state of the art Model Predictive Control (MPC) approaches to generate safe bipedal walking on slippery surfaces. In this setting, we formulate walking as a trade off between realizing a desired walking velocity and preserving robust foot-ground contact. Exploiting this formulation inside MPC, we show that safe walking on various flat terrains can be achieved by compromising three main attributes, i. e. walking velocity tracking, the Zero Moment Point (ZMP) modulation, and the Required Coefficient of Friction (RCoF) regulation. Simulation results show that increasing the walking velocity increases the possibility of slippage, while reducing the slippage possibility conflicts with reducing the tip-over possibility of the contact and vice versa.Comment: 6 pages, 7 figure

    CAD enabled trajectory optimization and accurate motion control for repetitive tasks

    Get PDF
    As machine users generally only define the start and end point of the movement, a large trajectory optimization potential rises for single axis mechanisms performing repetitive tasks. However, a descriptive mathematical model of the mecha- nism needs to be defined in order to apply existing optimization techniques. This is usually done with complex methods like virtual work or Lagrange equations. In this paper, a generic technique is presented to optimize the design of point-to-point trajectories by extracting position dependent properties with CAD motion simulations. The optimization problem is solved by a genetic algorithm. Nevertheless, the potential savings will only be achieved if the machine is capable of accurately following the optimized trajectory. Therefore, a feedforward motion controller is derived from the generic model allowing to use the controller for various settings and position profiles. Moreover, the theoretical savings are compared with experimental data from a physical set-up. The results quantitatively show that the savings potential is effectively achieved thanks to advanced torque feedforward with a reduction of the maximum torque by 12.6% compared with a standard 1/3-profil

    Reactive Planar Manipulation with Convex Hybrid MPC

    Full text link
    This paper presents a reactive controller for planar manipulation tasks that leverages machine learning to achieve real-time performance. The approach is based on a Model Predictive Control (MPC) formulation, where the goal is to find an optimal sequence of robot motions to achieve a desired object motion. Due to the multiple contact modes associated with frictional interactions, the resulting optimization program suffers from combinatorial complexity when tasked with determining the optimal sequence of modes. To overcome this difficulty, we formulate the search for the optimal mode sequences offline, separately from the search for optimal control inputs online. Using tools from machine learning, this leads to a convex hybrid MPC program that can be solved in real-time. We validate our algorithm on a planar manipulation experimental setup where results show that the convex hybrid MPC formulation with learned modes achieves good closed-loop performance on a trajectory tracking problem

    Learning feedforward controller for a mobile robot vehicle

    Get PDF
    This paper describes the design and realisation of an on-line learning posetracking controller for a three-wheeled mobile robot vehicle. The controller consists of two components. The first is a constant-gain feedback component, designed on the basis of a second-order model. The second is a learning feedforward component, containing a single-layer neural network, that generates a control contribution on the basis of the desired trajectory of the vehicle. The neural network uses B-spline basis functions, enabling a computationally fast implementation and fast learning. The resulting control system is able to correct for errors due to parameter mismatches and classes of structural errors in the model used for the controller design. After sufficient learning, an existing static gain controller designed on the basis of an extensive model has been outperformed in terms of tracking accuracy
    • …
    corecore