1,469 research outputs found

    Throughput optimization strategies for large-scale wireless LANs

    Get PDF
    Thanks to the active development of IEEE 802.11, the performance of wireless local area networks (WLANs) is improving by every new edition of the standard facilitating large enterprises to rely on Wi-Fi for more demanding applications. The limited number of channels in the unlicensed industrial scientific medical frequency band however is one of the key bottlenecks of Wi-Fi when scalability and robustness are points of concern. In this paper we propose two strategies for the optimization of throughput in wireless LANs: a heuristic derived from a theoretical model and a surrogate model based decision engine

    Discrete R-Contiguous bit Matching mechanism appropriateness for anomaly detection in Wireless Sensor Networks

    Get PDF
    Resource exhaustion is one of the main challenges for the security of Wireless Sensor Networks (WSNs). The challenge can be addressed by using algorithms that are light weighted. In this paper use of light-weighted R-Contiguous Bit matching for attack detection in WSNs has been evaluated. Use of R-Contiguous bit matching in Negative Selection Algorithm (NSA) has improved the performance of anomaly detection resulting in low false positive, false negative and high detection rates. The proposed model has been tested against some of the attacks. The high detection rate has proved the appropriateness of R-Contiguous bit matching mechanism for anomaly detection in WSNs

    Why It Takes So Long to Connect to a WiFi Access Point

    Full text link
    Today's WiFi networks deliver a large fraction of traffic. However, the performance and quality of WiFi networks are still far from satisfactory. Among many popular quality metrics (throughput, latency), the probability of successfully connecting to WiFi APs and the time cost of the WiFi connection set-up process are the two of the most critical metrics that affect WiFi users' experience. To understand the WiFi connection set-up process in real-world settings, we carry out measurement studies on 55 million mobile users from 44 representative cities associating with 77 million APs in 0.40.4 billion WiFi sessions, collected from a mobile "WiFi Manager" App that tops the Android/iOS App market. To the best of our knowledge, we are the first to do such large scale study on: how large the WiFi connection set-up time cost is, what factors affect the WiFi connection set-up process, and what can be done to reduce the WiFi connection set-up time cost. Based on the measurement analysis, we develop a machine learning based AP selection strategy that can significantly improve WiFi connection set-up performance, against the conventional strategy purely based on signal strength, by reducing the connection set-up failures from 33%33\% to 3.6%3.6\% and reducing 80%80\% time costs of the connection set-up processes by more than 1010 times.Comment: 11pages, conferenc
    • …
    corecore