7,073 research outputs found

    Learning to communicate computationally with Flip: a bi-modal programming language for game creation

    Get PDF
    Teaching basic computational concepts and skills to school children is currently a curricular focus in many countries. Running parallel to this trend are advances in programming environments and teaching methods which aim to make computer science more accessible, and more motivating. In this paper, we describe the design and evaluation of Flip, a programming language that aims to help 11–15 year olds develop computational skills through creating their own 3D role-playing games. Flip has two main components: 1) a visual language (based on an interlocking blocks design common to many current visual languages), and 2) a dynamically updating natural language version of the script under creation. This programming-language/natural-language pairing is a unique feature of Flip, designed to allow learners to draw upon their familiarity with natural language to “decode the code”. Flip aims to support young people in developing an understanding of computational concepts as well as the skills to use and communicate these concepts effectively. This paper investigates the extent to which Flip can be used by young people to create working scripts, and examines improvements in their expression of computational rules and concepts after using the tool. We provide an overview of the design and implementation of Flip before describing an evaluation study carried out with 12–13 year olds in a naturalistic setting. Over the course of 8 weeks, the majority of students were able to use Flip to write small programs to bring about interactive behaviours in the games they created. Furthermore, there was a significant improvement in their computational communication after using Flip (as measured by a pre/post-test). An additional finding was that girls wrote more, and more complex, scripts than did boys, and there was a trend for girls to show greater learning gains relative to the boys

    Cultural matter in the development of an interactive multimedia self-paced educational health program for aboriginal health workers

    Get PDF
    Aboriginal and Torres Strait islander health workers are key providers of primary health services to Aboriginal communities especially in remote and rural areas. They are often overloaded with competing demands. There has been limited attention given to the maintenance and ongoing enhancement of their skills and knowledge following the completion of formal training. A culturally appropriated interactive multimedia self-paced health program as a mechanism to improve the accessibility and the use of scientific data and information for health purposes is proposed as a basic method for better supporting Aboriginal and Torres Strait Islander primary health care workers in their practice locations. This paper explores different approaches for the development of a culturally appropriate interactive multimedia educational health program for Aboriginal and Torres Strait islander health workers and it also explore cultural matters concerning program development in the light of existing literature

    Virtual reality in theatre education and design practice - new developments and applications

    Get PDF
    The global use of Information and Communication Technologies (ICTs) has already established new approaches to theatre education and research, shifting traditional methods of knowledge delivery towards a more visually enhanced experience, which is especially important for teaching scenography. In this paper, I examine the role of multimedia within the field of theatre studies, with particular focus on the theory and practice of theatre design and education. I discuss various IT applications that have transformed the way we experience, learn and co-create our cultural heritage. I explore a suite of rapidly developing communication and computer-visualization techniques that enable reciprocal exchange between students, theatre performances and artefacts. Eventually, I analyse novel technology-mediated teaching techniques that attempt to provide a new media platform for visually enhanced information transfer. My findings indicate that the recent developments in the personalization of knowledge delivery, and also in student-centred study and e-learning, necessitate the transformation of the learners from passive consumers of digital products to active and creative participants in the learning experience

    Machinima interventions: innovative approaches to immersive virtual world curriculum integration

    Get PDF
    The educational value of Immersive Virtual Worlds (IVWs) seems to be in their social immersive qualities and as an accessible simulation technology. In contrast to these synchronous applications this paper discusses the use of educational machinima developed in IVW virtual film sets. It also introduces the concept of media intervention, proposing that digital media works best when simply developed for deployment within a blended curriculum to inform learning activity, and where the media are specifically designed to set challenges, seed ideas, or illustrate problems. Machinima, digital films created in IVWs, or digital games offer a rich mechanism for delivering such interventions. Scenes are storyboarded, constructed, shot and edited using techniques similar to professional film production, drawing upon a cast of virtual world avatars controlled through a human–computer interface, rather than showing real‐life actors. The approach enables academics or students to make films using screen capture software and desktop editing tools. In student‐generated production models the learning value may be found in the production process itself. This paper discusses six case studies and several themes from research on ideas for educational machinima including: access to production; creativity in teaching and learning; media intervention methodology; production models; reusability; visualisation and simulation

    A pedagogical model for science education through blended learning

    Get PDF
    Comunicação publicada nas atas da conferência EADTU 2015This paper proposes a framework to support science education through blended learning, based on a participatory and interactive approach supported by ICT-based tools, called Science Learning Activities Model (SLAM). The study constitutes a work in progress and started as a response to complex societal developments such as a changing labour market, high turnover rate of knowledge, and use of technology as a natural part of daily life activities. Another concern was the emergence of new challenges in education, like learning in various authentic contexts and in collaboration with others, in ways that influence the circumstances learners live in. Many of these challenges are related to science and it would be expected that students were interested in science, however the contrary is the case. So, after reviewing the relevant literature and the current trend towards a learner-centred approach, we contend that there is a need to provide a model with which teachers can design science courses with high motivational impact on students. By using today’s flexible, interactive and immersive technologies (mobile, AR, VR) combined with the appropriate pedagogies, we believe it is possible to have students more motivated in science areas (STEM), and expect a more creative response to the world problems that surround them

    A learning design for student-generated digital storytelling

    Full text link
    The literature on digital video in education emphasises the use of prefabricated, instructional-style video assets. Learning designs for supporting the use of these expert-generated video products have been developed. However, there has been a paucity of pedagogical frameworks for facilitating specific genres of learner-generated video projects. Informed by two studies, this article describes the development of a learning design for a popular genre: learner-generated digital storytelling. A particular learning design representation is used to present a structured description of an approach to digital storytelling, and issues are raised relating to future iterations of the design. Š 2011 Taylor & Francis

    Novice programming environments: lowering the barriers, supporting the progression

    Get PDF
    In 2011, the author published an article that looked at the state of the art in novice programming environments. At the time, there had been an increase in the number of programming environments that were freely available for use by novice programmers, particularly children and young people. What was interesting was that they offered a relatively sophisticated set of development and support features within motivating and engaging environments, where programming could be seen as a means to a creative end, rather than an end in itself. Furthermore, these environments incorporated support for the social and collaborative aspects of learning. The article considered five environments—Scratch, Alice, Looking Glass, Greenfoot, and Flip— examining their characteristics and investigating the opportunities they might offer to educators and learners alike. It also considered the broader implications of such environments for both teaching and research. In this chapter, the author revisits the same five environments, looking at how they have changed in the intervening years. She considers their evolution in relation to changes in the field more broadly (e.g., an increased focus on “programming for all”) and reflects on the implications for teaching, as well as research and further development
    • …
    corecore