612 research outputs found

    A leader election algorithm for dynamic networks with causal clocks

    Get PDF
    An algorithm for electing a leader in an asynchronous network with dynamically changing communication topology is presented. The algorithm ensures that, no matter what pattern of topology changes occurs, if topology changes cease, then eventually every connected component contains a unique leader. The algorithm combines ideas from the Temporally Ordered Routing Algorithm for mobile ad hoc networks (Park and Corson in Proceedings of the 16th IEEE Conference on Computer Communications (INFOCOM), pp. 1405ā€“1413 (1997) with a wave algorithm (Tel in Introduction to distributed algorithms, 2nd edn. Cambridge University Press, Cambridge, MA, 2000), all within the framework of a height-based mechanism for reversing the logical direction of communication topology links (Gafni and Bertsekas in IEEE Trans Commun Cā€“29(1), 11ā€“18 1981). Moreover, a generic representation of time is used, which can be implemented using totally-ordered values that preserve the causality of events, such as logical clocks and perfect clocks. A correctness proof for the algorithm is provided, and it is ensured that in certain well-behaved situations, a new leader is not elected unnecessarily, that is, the algorithm satisfies a stability condition.National Science Foundation (U.S.) (0500265)Texas Higher Education Coordinating Board (ARP-00512-0007-2006)Texas Higher Education Coordinating Board (ARP 000512-0130-2007)National Science Foundation (U.S.) (IIS-0712911)National Science Foundation (U.S.) (CNS-0540631)National Science Foundation (U.S.) (Research Experience for Undergraduates (Program) (0649233)

    Preserving Stabilization while Practically Bounding State Space

    Full text link
    Stabilization is a key dependability property for dealing with unanticipated transient faults, as it guarantees that even in the presence of such faults, the system will recover to states where it satisfies its specification. One of the desirable attributes of stabilization is the use of bounded space for each variable. In this paper, we present an algorithm that transforms a stabilizing program that uses variables with unbounded domain into a stabilizing program that uses bounded variables and (practically bounded) physical time. While non-stabilizing programs (that do not handle transient faults) can deal with unbounded variables by assigning large enough but bounded space, stabilizing programs that need to deal with arbitrary transient faults cannot do the same since a transient fault may corrupt the variable to its maximum value. We show that our transformation algorithm is applicable to several problems including logical clocks, vector clocks, mutual exclusion, leader election, diffusing computations, Paxos based consensus, and so on. Moreover, our approach can also be used to bound counters used in an earlier work by Katz and Perry for adding stabilization to a non-stabilizing program. By combining our algorithm with that earlier work by Katz and Perry, it would be possible to provide stabilization for a rich class of problems, by assigning large enough but bounded space for variables.Comment: Moved some content from the Appendix to the main paper, added some details to the transformation algorithm and to its descriptio

    Properties of link reversal algorithms for routing and leader election

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (p. 75-77).We present two link-reversal algorithms and some interesting properties that they satisfy. First, we describe the Partial Reversal (PR) algorithm [13], which ensures that the underlying graph structure is destination-oriented and acyclic. These properties of PR make it useful in routing protocols and algorithms for solving leader election and mutual exclusion. While proofs exist to establish the acyclicity property of PR, they rely on assigning labels to either the nodes or the edges in the graph. In this work we present simpler direct proof of the acyclicity property of partial reversal without using any external or dynamic labeling mechanisms. Second, we describe the leader election (LE) algorithm of [16], which guarantees that a unique leader is elected in an asynchronous network with a dynamically-changing communication topology. The algorithm ensures that, no matter what pattern of topology changes occurs, if topology changes cease, then eventually every connected component contains a unique leader and all nodes have directed paths to that leader. Our contribution includes a complexity analysis of the algorithm showing that after topology changes stop, no more than 0(n) elections occur in the system. We also provide a discussion on certain situations in which a new leader is elected (unnecessarily) when there is already another leader in the same connected component. Finally, we show how the LE algorithm can be augmented in such a way that nodes also have the shortest path to the leader.by Tsvetomira RadevaS.M

    Elements of the Theory of Dynamic Networks

    Get PDF

    Topology Aware Leader Election Algorithm for MANET

    Get PDF
    National audienceThis article presents an eventual leader election algorithm for mobile dynamic networks. Each node builds knowledge of the communication graph of connected nodes, by broadcasting changes in their neighborhood. This knowledge provides the current topology of the network, used to compute the closeness centrality as the choice of the leader. Experiments were realized on PeerSim simulator, comparing our algorithm with static and dynamic flooding algorithms, on different network topologies and mobility patterns. Our algorithm improves leader stability up to 24%, sends half less messages and aims to an 8% shorter leader path
    • ā€¦
    corecore