2,081 research outputs found

    Diseño de circuitos analógicos y de señal mixta con consideraciones de diseño físico y variabilidad

    Get PDF
    Advances in microelectronic technology has been based on an increasing capacity to integrate transistors, moving this industry to the nanoelectronics realm in recent years. Moore’s Law [1] has predicted (and somehow governed) the growth of the capacity to integrate transistors in a single IC. Nevertheless, while this capacity has grown steadily, the increasing number of design tasks that are involved in the creation of the integrated circuit and their complexity has led to a phenomenon known as the ``design gap´´. This is the difference between what can theoretically be integrated and what can practically be designed. Since the early 2000s, the International Technology Roadmap of Semiconductors (ITRS) reports, published by the Semiconductor Industry Association (SIA), alert about the necessity to limit the growth of the design cost by increasing the productivity of the designer to continue the semiconductor industry’s growth. Design automation arises as a key element to close this ”design gap”. In this sense, electronic design automation (EDA) tools have reached a level of maturity for digital circuits that is far behind the EDA tools that are made for analog circuit design automation. While digital circuits rely, in general, on two stable operation states (which brings inherent robustness against numerous imperfections and interferences, leading to few design constraints like area, speed or power consumption), analog signal processing, on the other hand, demands compliance with lots of constraints (e.g., matching, noise, robustness, ...). The triumph of digital CMOS circuits, thanks to their mentioned robustness, has, ultimately, facilitated the way that circuits can be processed by algorithms, abstraction levels and description languages, as well as how the design information traverse the hierarchical levels of a digital system. The field of analog design automation faces many more difficulties due to the many sources of perturbation, such as the well-know process variability, and the difficulty in treating these systematically, like digital tools can do. In this Thesis, different design flows are proposed, focusing on new design methodologies for analog circuits, thus, trying to close the ”gap” between digital and analog EDA tools. In this chapter, the most important sources for perturbations and their impact on the analog design process are discussed in Section 1.2. The traditional analog design flow is discussed in 1.3. Emerging design methodologies that try to reduce the ”design gap” are presented in Section 1.4 where the key concept of Pareto-Optimal Front (POF) is explained. This concept, brought from the field of economics, models the analog circuit performances into a set of solutions that show the optimal trade-offs among conflicting circuit performances (e.g. DC-gain and unity-gain frequency). Finally, the goals of this thesis are presented in Section 1.5

    A facility to Search for Hidden Particles (SHiP) at the CERN SPS

    Get PDF
    A new general purpose fixed target facility is proposed at the CERN SPS accelerator which is aimed at exploring the domain of hidden particles and make measurements with tau neutrinos. Hidden particles are predicted by a large number of models beyond the Standard Model. The high intensity of the SPS 400~GeV beam allows probing a wide variety of models containing light long-lived exotic particles with masses below O{\cal O}(10)~GeV/c2^2, including very weakly interacting low-energy SUSY states. The experimental programme of the proposed facility is capable of being extended in the future, e.g. to include direct searches for Dark Matter and Lepton Flavour Violation.Comment: Technical Proposa

    The 1991 3rd NASA Symposium on VLSI Design

    Get PDF
    Papers from the symposium are presented from the following sessions: (1) featured presentations 1; (2) very large scale integration (VLSI) circuit design; (3) VLSI architecture 1; (4) featured presentations 2; (5) neural networks; (6) VLSI architectures 2; (7) featured presentations 3; (8) verification 1; (9) analog design; (10) verification 2; (11) design innovations 1; (12) asynchronous design; and (13) design innovations 2

    NASA SERC 1990 Symposium on VLSI Design

    Get PDF
    This document contains papers presented at the first annual NASA Symposium on VLSI Design. NASA's involvement in this event demonstrates a need for research and development in high performance computing. High performance computing addresses problems faced by the scientific and industrial communities. High performance computing is needed in: (1) real-time manipulation of large data sets; (2) advanced systems control of spacecraft; (3) digital data transmission, error correction, and image compression; and (4) expert system control of spacecraft. Clearly, a valuable technology in meeting these needs is Very Large Scale Integration (VLSI). This conference addresses the following issues in VLSI design: (1) system architectures; (2) electronics; (3) algorithms; and (4) CAD tools

    Una aproximación multinivel para el diseño sistemático de circuitos integrados de radiofrecuencia.

    Get PDF
    Tesis reducida por acuerdo de confidencialidad.En un mercado bien establecido como el de las telecomunicaciones, donde se está evolucionando hacia el 5G, se estima que hoy en día haya más de 2 Mil Millones de usuarios de Smartphones. Solo de por sí, este número es asombroso. Pero nada se compara a lo que va a pasar en un futuro muy próximo. El próximo boom tecnológico está directamente conectado con el mercado emergente del internet of things (IoT). Se estima que, en 2020, habrá 20 Mil Millones de dispositivos físicos conectados y comunicando entre sí, lo que equivale a 4 dispositivos físicos por cada persona del planeta. Debido a este boom tecnológico, van a surgir nuevas e interesantes oportunidades de inversión e investigación. De hecho, se estima que en 2020 se van a invertir cerca de 3 Mil Millones de dólares solo en este mercado, un 50% más que en 2017. Todos estos dispositivos IoT tienen que comunicarse inalámbricamente entre sí, algo en lo que los circuitos de radiofrecuencia (RF) son imprescindibles. El problema es que el diseño de circuitos RF en tecnologías nanométricas se está haciendo extraordinariamente difícil debido a su creciente complejidad. Este hecho, combinado con los críticos compromisos entre las prestaciones de estos circuitos, tales como el consumo de energía, el área de chip, la fiabilidad de los chips, etc., provocan una reducción en la productividad en su diseño, algo que supone un problema debido a las estrictas restricciones time-to-market de las empresas. Es posible concluir, por tanto, que uno de los ámbitos en los que es tremendamente importante centrarse hoy en día, es el desarrollo de nuevas metodologías de diseño de circuitos RF que permitan al diseñador obtener circuitos que cumplan con especificaciones muy exigentes en un tiempo razonable. Debido a las complejas relaciones entre prestaciones de los circuitos RF (por ejemplo, ruido de fase frente a consumo de potencia en un oscilador controlado por tensión), es fácil comprender que el diseño de circuitos RF es una tarea extremadamente complicada y debe ser soportada por herramientas de diseño asistido por ordenador (EDA). En un escenario ideal, los diseñadores tendrían una herramienta EDA que podría generar automáticamente un circuito integrado (IC), algo definido en la literatura como un compilador de silicio. Con esta herramienta ideal, el usuario sólo estipularía las especificaciones deseadas para su sistema y la herramienta generaría automáticamente el diseño del IC listo para fabricar (lo que se denomina diseño físico o layout). Sin embargo, para sistemas complejos tales como circuitos RF, dicha herramienta no existe. La tesis que se presenta, se centra exactamente en el desarrollo de nuevas metodologías de diseño capaces de mejorar el estado del arte y acortar la brecha de productividad existente en el diseño de circuitos RF. Por lo tanto, con el fin de establecer una nueva metodología de diseño para sistemas RF, se han de abordar distintos cuellos de botella del diseño RF con el fin de diseñar con éxito dichos circuitos. El diseño de circuitos RF ha seguido tradicionalmente una estrategia basada en ecuaciones analíticas derivadas específicamente para cada circuito y que exige una gran experiencia del diseñador. Esto significa que el diseñador plantea una estrategia para diseñar el circuito manualmente y, tras varias iteraciones, normalmente logra que el circuito cumpla con las especificaciones deseadas. No obstante, conseguir diseños con prestaciones óptimas puede ser muy difícil utilizando esta metodología, ya que el espacio de diseño (o búsqueda) es enorme (decenas de variables de diseño con cientos de combinaciones diferentes). Aunque el diseñador llegue a una solución que cumpla todas las especificaciones, nunca estará seguro de que el diseño al que ha llegado es el mejor (por ejemplo, el que consuma menos energía). Hoy en día, las técnicas basadas en optimización se están utilizando con el objetivo de ayudar al diseñador a encontrar automáticamente zonas óptimas de diseño. El uso de metodologías basadas en optimización intenta superar las limitaciones de metodologías previas mediante el uso de algoritmos que son capaces de realizar una amplia exploración del espacio de diseño para encontrar diseños de prestaciones óptimas. La filosofía de estas metodologías es que el diseñador elige las especificaciones del circuito, selecciona la topología y ejecuta una optimización que devuelve el valor de cada componente del circuito óptimo (por ejemplo, anchos y longitudes de los transistores) de forma automática. Además, mediante el uso de estos algoritmos, la exploración del espacio de diseño permite estudiar los distintos y complejos compromisos entre prestaciones de los circuitos de RF. Sin embargo, la problemática del diseño de RF es mucho más amplia que la selección del tamaño de cada componente. Con el objetivo de conseguir algo similar a un compilador de silicio para circuitos RF, la metodología desarrollada en la tesis, tiene que ser capaz de asegurar un diseño robusto que permita al diseñador tener éxito frente a medidas experimentales, y, además, las optimizaciones tienen que ser elaboradas en tiempos razonables para que se puedan cumplir las estrictas restricciones time-to-market de las empresas. Para conseguir esto, en esta tesis, hay cuatro aspectos clave que son abordados en la metodología: 1. Los inductores integrados todavía son un cuello de botella en circuitos RF. Los parásitos que aparecen a altas frecuencias hacen que las prestaciones de los inductores sean muy difíciles de modelar. Existe, por tanto, la necesidad de desarrollar nuevos modelos más precisos, pero también muy eficientes computacionalmente que puedan ser incluidos en metodologías que usen algoritmos de optimización. 2. Las variaciones de proceso son fenómenos que afectan mucho las tecnologías nanométricas, así que para obtener un diseño robusto es necesario tener en cuenta estas variaciones durante la optimización. 3. En las metodologías de diseño manual, los parásitos de layout normalmente no se tienen en cuenta en una primera fase de diseño. En ese sentido, cuando el diseñador pasa del diseño topológico al diseño físico, puede que su circuito deje de cumplir con las especificaciones. Estas consideraciones físicas del circuito deben ser tenidas en cuenta en las primeras etapas de diseño. Por lo tanto, con el fin de abordar este problema, la metodología desarrollada tiene que tener en cuenta los parásitos de la realización física desde una primera fase de optimización. 4. Una vez se ha desarrollado la capacidad de generar distintos circuitos RF de forma automática utilizando esta metodología (amplificadores de bajo ruido, osciladores controlados por tensión y mezcladores), en la tesis se aborda también la composición de un sistema RF con una aproximación multinivel, donde el proceso empieza por el diseño de los componentes pasivos y termina componiendo distintos circuitos, construyendo un sistema (por ejemplo, un receptor de radiofrecuencia). La tesis aborda los cuatro problemas descritos anteriormente con éxito, y ha avanzado considerablemente en el estado del arte de metodologías de diseño automáticas/sistemáticas para circuitos RF.Premio Extraordinario de Doctorado U

    Fourth Conference on Artificial Intelligence for Space Applications

    Get PDF
    Proceedings of a conference held in Huntsville, Alabama, on November 15-16, 1988. The Fourth Conference on Artificial Intelligence for Space Applications brings together diverse technical and scientific work in order to help those who employ AI methods in space applications to identify common goals and to address issues of general interest in the AI community. Topics include the following: space applications of expert systems in fault diagnostics, in telemetry monitoring and data collection, in design and systems integration; and in planning and scheduling; knowledge representation, capture, verification, and management; robotics and vision; adaptive learning; and automatic programming

    The 1990 Johnson Space Center bibliography of scientific and technical papers

    Get PDF
    Abstracts are presented of scientific and technical papers written and/or presented by L. B. Johnson Space Center (JSC) authors, including civil servants, contractors, and grantees, during the calendar year of 1990. Citations include conference and symposium presentations, papers published in proceedings or other collective works, seminars, and workshop results, NASA formal report series (including contractually required final reports), and articles published in professional journals

    Multi-kw dc power distribution system study program

    Get PDF
    The first phase of the Multi-kw dc Power Distribution Technology Program is reported and involves the test and evaluation of a technology breadboard in a specifically designed test facility according to design concepts developed in a previous study on space vehicle electrical power processing, distribution, and control. The static and dynamic performance, fault isolation, reliability, electromagnetic interference characterisitics, and operability factors of high distribution systems were studied in order to gain a technology base for the use of high voltage dc systems in future aerospace vehicles. Detailed technical descriptions are presented and include data for the following: (1) dynamic interactions due to operation of solid state and electromechanical switchgear; (2) multiplexed and computer controlled supervision and checkout methods; (3) pulse width modulator design; and (4) cable design factors

    Full Issue

    Get PDF
    Full Issue for Volume 7 Issue
    corecore