568 research outputs found

    Single-shot layered reflectance separation using a polarized light field camera

    Get PDF
    We present a novel computational photography technique for single shot separation of diffuse/specular reflectance as well as novel angular domain separation of layered reflectance. Our solution consists of a two-way polarized light field (TPLF) camera which simultaneously captures two orthogonal states of polarization. A single photograph of a subject acquired with the TPLF camera under polarized illumination then enables standard separation of diffuse (depolarizing) and polarization preserving specular reflectance using light field sampling. We further demonstrate that the acquired data also enables novel angular separation of layered reflectance including separation of specular reflectance and single scattering in the polarization preserving component, and separation of shallow scattering from deep scattering in the depolarizing component. We apply our approach for efficient acquisition of facial reflectance including diffuse and specular normal maps, and novel separation of photometric normals into layered reflectance normals for layered facial renderings. We demonstrate our proposed single shot layered reflectance separation to be comparable to an existing multi-shot technique that relies on structured lighting while achieving separation results under a variety of illumination conditions

    A Biophysically-Based Model of the Optical Properties of Skin Aging

    Get PDF
    This paper presents a time-varying, multi-layered biophysically-based model of the optical properties of human skin, suitable for simulating appearance changes due to aging. We have identified the key aspects that cause such changes, both in terms of the structure of skin and its chromophore concentrations, and rely on the extensive medical and optical tissue literature for accurate data. Our model can be expressed in terms of biophysical parameters, optical parameters commonly used in graphics and rendering (such as spectral absorption and scattering coefficients), or more intuitively with higher-level parameters such as age, gender, skin care or skin type. It can be used with any rendering algorithm that uses diffusion profiles, and it allows to automatically simulate different types of skin at different stages of aging, avoiding the need for artistic input or costly capture processes

    BSSRDF estimation from single images

    Get PDF
    We present a novel method to estimate an approximation of the reflectance characteristics of optically thick, homogeneous translucent materials using only a single photograph as input. First, we approximate the diffusion profile as a linear combination of piecewise constant functions, an approach that enables a linear system minimization and maximizes robustness in the presence of suboptimal input data inferred from the image. We then fit to a smoother monotonically decreasing model, ensuring continuity on its first derivative. We show the feasibility of our approach and validate it in controlled environments, comparing well against physical measurements from previous works. Next, we explore the performance of our method in uncontrolled scenarios, where neither lighting nor geometry are known. We show that these can be roughly approximated from the corresponding image by making two simple assumptions: that the object is lit by a distant light source and that it is globally convex, allowing us to capture the visual appearance of the photographed material. Compared with previous works, our technique offers an attractive balance between visual accuracy and ease of use, allowing its use in a wide range of scenarios including off-the-shelf, single images, thus extending the current repertoire of real-world data acquisition techniques

    Analysis of light transport in scattering media

    Get PDF
    We propose a new method to analyze light transport in homogeneous scattering media. The incident light undergoes multiple bounces in translucent objects, and produces a complex light field. Our method analyzes the light transport in two steps. First, single and multiple scattering are separated by projecting high-frequency stripe patterns. Then, multiple scattering is decomposed into each bounce component based on the light transport equation. The light field for each bounce is recursively estimated. Experimental results show that light transport in scattering media can be decomposed and visualized for each bounce.Microsoft Researc

    Absorptive scattering model for rough laminar surfaces

    Get PDF

    Affordable spectral measurements of translucent materials

    Get PDF
    We present a spectral measurement approach for the bulk optical properties of translucent materials using only low-cost components. We focus on the translucent inks used in full-color 3D printing, and develop a technique with a high spectral resolution, which is important for accurate color reproduction. We enable this by developing a new acquisition technique for the three unknown material parameters, namely, the absorption and scattering coefficients, and its phase function anisotropy factor, that only requires three point measurements with a spectrometer. In essence, our technique is based on us finding a three-dimensional appearance map, computed using Monte Carlo rendering, that allows the conversion between the three observables and the material parameters. Our measurement setup works without laboratory equipment or expensive optical components. We validate our results on a 3D printed color checker with various ink combinations. Our work paves a path for more accurate appearance modeling and fabrication even for low-budget environments or affordable embedding into other devices

    The Impact of Surface Normals on Appearance

    Get PDF
    The appearance of an object is the result of complex light interaction with the object. Beyond the basic interplay between incident light and the object\u27s material, a multitude of physical events occur between this illumination and the microgeometry at the point of incidence, and also beneath the surface. A given object, made as smooth and opaque as possible, will have a completely different appearance if either one of these attributes - amount of surface mesostructure (small-scale surface orientation) or translucency - is altered. Indeed, while they are not always readily perceptible, the small-scale features of an object are as important to its appearance as its material properties. Moreover, surface mesostructure and translucency are inextricably linked in an overall effect on appearance. In this dissertation, we present several studies examining the importance of surface mesostructure (small-scale surface orientation) and translucency on an object\u27s appearance. First, we present an empirical study that establishes how poorly a mesostructure estimation technique can perform when translucent objects are used as input. We investigate the two major factors in determining an object\u27s translucency: mean free path and scattering albedo. We exhaustively vary the settings of these parameters within realistic bounds, examining the subsequent blurring effect on the output of a common shape estimation technique, photometric stereo. Based on our findings, we identify a dramatic effect that the input of a translucent material has on the quality of the resultant estimated mesostructure. In the next project, we discuss an optimization technique for both refining estimated surface orientation of translucent objects and determining the reflectance characteristics of the underlying material. For a globally planar object, we use simulation and real measurements to show that the blurring effect on normals that was observed in the previous study can be recovered. The key to this is the observation that the normalization factor for recovered normals is proportional to the error on the accuracy of the blur kernel created from estimated translucency parameters. Finally, we frame the study of the impact of surface normals in a practical, image-based context. We discuss our low-overhead, editing tool for natural images that enables the user to edit surface mesostructure while the system automatically updates the appearance in the natural image. Because a single photograph captures an instant of the incredibly complex interaction of light and an object, there is a wealth of information to extract from a photograph. Given a photograph of an object in natural lighting, we allow mesostructure edits and infer any missing reflectance information in a realistically plausible way

    VITRAIL : Acquisition, Modelling and Rendering of Stained Glass

    Get PDF
    Stained glass windows are designed to reveal their powerful artistry under diverse and time-varying lighting conditions; virtual relighting of stained glass, therefore represents an exceptional tool for the appreciation of this age old art form. However, as opposed to most other artifacts, stained glass windows are extremely difficult if not impossible to analyze using controlled illumination because of their size and position. In this paper we present novel methods built upon image based priors to perform virtual relighting of stained glass artwork by acquiring the actual light transport properties of a given artefact. In a preprocessing step we build a material-dependent dictionary for light transport by studying the scattering properties of glass samples in a laboratory setup. We can now use the dictionary to recover a light transport matrix in two ways: under controlled illuminations the dictionary constitutes a sparsifying basis for a compressive sensing acquisition, while in the case of uncontrolled illuminations the dictionary is used to perform sparse regularization. The proposed basis preserves volume impurities and we show that the retrieved light transport matrix is heterogeneous, as in the case of real world objects. We present the rendering results of several stained glass artifacts, including the Rose Window of the cathedral of Lausanne, digitized using the presented methods
    corecore