11,698 research outputs found

    Chains, Antichains, and Complements in Infinite Partition Lattices

    Full text link
    We consider the partition lattice Πκ\Pi_\kappa on any set of transfinite cardinality κ\kappa and properties of Πκ\Pi_\kappa whose analogues do not hold for finite cardinalities. Assuming the Axiom of Choice we prove: (I) the cardinality of any maximal well-ordered chain is always exactly κ\kappa; (II) there are maximal chains in Πκ\Pi_\kappa of cardinality >κ> \kappa; (III) if, for every cardinal λ<κ\lambda < \kappa, we have 2λ<2κ2^{\lambda} < 2^\kappa, there exists a maximal chain of cardinality <2κ< 2^{\kappa} (but κ\ge \kappa) in Π2κ\Pi_{2^\kappa}; (IV) every non-trivial maximal antichain in Πκ\Pi_\kappa has cardinality between κ\kappa and 2κ2^{\kappa}, and these bounds are realized. Moreover we can construct maximal antichains of cardinality max(κ,2λ)\max(\kappa, 2^{\lambda}) for any λκ\lambda \le \kappa; (V) all cardinals of the form κλ\kappa^\lambda with 0λκ0 \le \lambda \le \kappa occur as the number of complements to some partition PΠκ\mathcal{P} \in \Pi_\kappa, and only these cardinalities appear. Moreover, we give a direct formula for the number of complements to a given partition; (VI) Under the Generalized Continuum Hypothesis, the cardinalities of maximal chains, maximal antichains, and numbers of complements are fully determined, and we provide a complete characterization.Comment: 24 pages, 2 figures. Submitted to Algebra Universalis on 27/11/201

    An upper bound on the size of diamond-free families of sets

    Get PDF
    Let La(n,P)La(n,P) be the maximum size of a family of subsets of [n]={1,2,...,n}[n]=\{1,2,...,n\} not containing PP as a (weak) subposet. The diamond poset, denoted B2B_{2}, is defined on four elements x,y,z,wx,y,z,w with the relations x<y,zx<y,z and y,z<wy,z<w. La(n,P)La(n,P) has been studied for many posets; one of the major open problems is determining La(n,B2)La(n,B_{2}). Studying the average number of sets from a family of subsets of [n][n] on a maximal chain in the Boolean lattice 2[n]2^{[n]} has been a fruitful method. We use a partitioning of the maximal chains and introduce an induction method to show that La(n,B2)(2.20711+o(1))(nn2)La(n,B_{2})\leq(2.20711+o(1))\binom{n}{\left\lfloor \frac{n}{2}\right\rfloor }, improving on the earlier bound of (2.25+o(1))(nn2)(2.25+o(1))\binom{n}{\left\lfloor \frac{n}{2}\right\rfloor } by Kramer, Martin and Young.Comment: Accepted by JCTA. Writing is improved based on the suggestions of referee

    On the Combinatorics of Locally Repairable Codes via Matroid Theory

    Full text link
    This paper provides a link between matroid theory and locally repairable codes (LRCs) that are either linear or more generally almost affine. Using this link, new results on both LRCs and matroid theory are derived. The parameters (n,k,d,r,δ)(n,k,d,r,\delta) of LRCs are generalized to matroids, and the matroid analogue of the generalized Singleton bound in [P. Gopalan et al., "On the locality of codeword symbols," IEEE Trans. Inf. Theory] for linear LRCs is given for matroids. It is shown that the given bound is not tight for certain classes of parameters, implying a nonexistence result for the corresponding locally repairable almost affine codes, that are coined perfect in this paper. Constructions of classes of matroids with a large span of the parameters (n,k,d,r,δ)(n,k,d,r,\delta) and the corresponding local repair sets are given. Using these matroid constructions, new LRCs are constructed with prescribed parameters. The existence results on linear LRCs and the nonexistence results on almost affine LRCs given in this paper strengthen the nonexistence and existence results on perfect linear LRCs given in [W. Song et al., "Optimal locally repairable codes," IEEE J. Sel. Areas Comm.].Comment: 48 pages. Submitted for publication. In this version: The text has been edited to improve the readability. Parameter d for matroids is now defined by the use of the rank function instead of the dual matroid. Typos are corrected. Section III is divided into two parts, and some numberings of theorems etc. have been change

    Small Mass Implies Uniqueness of Gibbs States of a Quantum Crystal

    Get PDF
    A model of interacting quantum particles performing one-dimensional anharmonic oscillations around their equilibrium positions which form a lattice ℤ d is considered. For this model, it is proved that the set of tempered Euclidean Gibbs measures is a singleton provided the particle mass is less than a certain bound m *, which is independent of the temperature β−1. This settles a problem that was open for a long time and is an essential improvement of a similar result proved before by the same authors [5], where the bound m * depended on β in such a way that m(β)0{{m_{{\ast}} (\beta) \rightarrow 0}} as ${{\beta \rightarrow +\infty}}

    Bounds on Binary Locally Repairable Codes Tolerating Multiple Erasures

    Full text link
    Recently, locally repairable codes has gained significant interest for their potential applications in distributed storage systems. However, most constructions in existence are over fields with size that grows with the number of servers, which makes the systems computationally expensive and difficult to maintain. Here, we study linear locally repairable codes over the binary field, tolerating multiple local erasures. We derive bounds on the minimum distance on such codes, and give examples of LRCs achieving these bounds. Our main technical tools come from matroid theory, and as a byproduct of our proofs, we show that the lattice of cyclic flats of a simple binary matroid is atomic.Comment: 9 pages, 1 figure. Parts of this paper were presented at IZS 2018. This extended arxiv version includes corrected versions of Theorem 1.4 and Proposition 6 that appeared in the IZS 2018 proceeding
    corecore