1,705 research outputs found

    Modeling dispersive silver in the electrodynamic lattice-Boltzmann method using complex-conjugate pole-residue pairs

    Full text link
    The polarization density of a broadband electrodynamic lattice-Boltzmann method (ELBM) is generalized to represent frequency-dispersion of materials interacting with electromagnetic waves. The frequency-dependent refractive index and extinction coefficient are modeled using complex-conjugate pole-residue pairs in an auxiliary-differential-equation (ADE). Electric and magnetic fields are evaluated on a single lattice, ensuring a stable numerical solution up to the Nyquist limit. The electric and magnetic fields from the ELBM are compared with the electric and magnetic fields from the finite-difference-time-domain (FDTD) method. Accurate transmittance of a 100 nm silver slab is extracted from the transmitted power spectrum of a broadband Dirac-delta wave-function for photon energies ranging from 0.125-5 eV. Given this capability, the ELBM with an ADE is an accurate and computationally efficient method for modeling broadband frequency-dispersion of materials.Comment: 13 pages, 5 figures, CodeOcean samples at doi: 10.24433/CO.5926359.v

    Lattice Boltzmann Method for Electromagnetic Wave Propagation

    Full text link
    We present a new Lattice Boltzmann (LB) formulation to solve the Maxwell equations for electromagnetic (EM) waves propagating in a heterogeneous medium. By using a pseudo-vector discrete Boltzmann distribution, the scheme is shown to reproduce the continuum Maxwell equations. The technique compares well with a pseudo-spectral method at solving for two-dimensional wave propagation in a heterogeneous medium, which by design contains substantial contrasts in the refractive index. The extension to three dimensions follows naturally and, owing to the recognized efficiency of LB schemes for parallel computation in irregular geometries, it gives a powerful method to numerically simulate a wide range of problems involving EM wave propagation in complex media.Comment: 6 pages, 3 figures, accepted Europhysics letter

    Physics of Quark--Gluon Plasma

    Get PDF
    In this lecture, we give a brief review of what theorists now know, understand, or guess about static and kinetic properties of quark--gluon plasma. A particular attention is payed to the problem of physical observability, i.e. the physical meaningfulness of various characteristics of QGPQGP discussed in the literature.Comment: 35 pages LaTeX, 3 Postscript figures included by epsf.sty are now fixed and printable, uses axodraw.sty included in the package. Some references added and minor stylistic changes made. Lecture at the XXIV ITEP Winter School (Snegiri, February 1996

    High-frequency acoustoelectronic phenomena in miniband superlattices

    Get PDF
    The motion of a quantum particle in a periodic potential can generate rich dynamics in the presence of a driving field. Such systems include, but are not limited to, semiconductor superlattices which exhibit a very anisotropic band structure that results into pronounced nonlinearities and high carrier mobility. In this thesis, we investigate the semiclassical dynamics and electron transport in a spatially periodic potential driven by a propagating wave. Firstly, we examine the transport features of an electron in a single miniband superlattice driven by a high-frequency acoustic plane wave. In this system, the nonlinear electron dynamics crucially depends on the amplitude of the acoustic wave. The transport characteristics are studied by means of a non-linearised kinetic model. In particular, to provide a realistic description of the directed transport, we employ the exact path-integral solutions of the Boltzmann transport equation. The calculated electron drift velocity and the time-averaged velocity show a nonmonotonic dependence upon the amplitude of the acoustic wave with multiple pronounced extrema. We found out that the changes in the velocity-amplitude characteristics are directly associated with a series of global bifurcations due to topological rearrangements of the phase space of the system. These dramatic transformations are connected with superlattice intraminiband transitions, and accompanied by inelastic emission (absorption) of the quantum particle. The bifurcations also signify the transitions between different dynamical regimes, involving unconfined electron motion, wave-dragging and phonon-assisted Bloch oscillations. Each regime has a characteristic spectral fingerprint, which manifests itself in appearance of specific high-frequency components in the spectra of the corresponding averaging trajectory. Secondly, we consider to use the acoustically pumped superlattices for an amplification of THz electromagnetic waves, involving the mechanisms similar to the Bloch gain in electrically biased superlattices. In particular, we predict the tunable THz gain due to nonlinear oscillations which are associated with the localised motion of electrons confined by a propagating potential wave. Traditionally, one of the key issues which emerges from considering different schemes for achieving small signal gain in superlattices, is the control of electric stability. Here, it is shown that for our case of the fast miniband electrons driven by an acoustic wave, terahertz gain can occur without the electric instability. Additionally, we find that the characteristic changes in the averaged velocities are connected to the shape of gain profiles. Consequently, the analytic findings, which determine the transitions between different dynamical regimes at the bifurcations, hold up for the behaviour of amplification of high-frequency electromagnetic waves. The increase of the miniband width, results in an enhancement of the effect of phase space restructuring on the drift velocity and high-frequency gain. Finally, we analyse the case for a superlattice device utilising acoustic waves with a very slow propagation speed. Benefiting from a simple solution of the Boltzmann equation, here we clarify the role of spatial nonlinearity both in miniband electron dynamics and in amplification of an electromagnetic wave. We show that nonlinear Bloch oscillations occur at a single critical value of the wave amplitude, inducing high negative differential drift velocity. Within this model, we also explain how the amplification of a high-frequency signal can arise below the threshold for an excitation of Bloch oscillations

    Dual-band, double-negative, polarization-independent metamaterial for the visible spectrum

    Full text link
    We present the first dual-band negative index metamaterial that operates in the visible spectrum. The optimized four-functional-layer metamaterial structure exhibits the first double-negative (i.e., simultaneously negative permittivity and permeability) band in the red region of the visible spectrum with a figure of merit of 1.7 and the second double-negative band in the green region of the visible spectrum with a figure of merit of 3.2. The optical behavior of the proposed structure is independent of the polarization of the incident field. This low-loss metamaterial structure can be treated as a modified version of a fishnet metamaterial structure with an additional metal layer of different thickness in a single functional layer. The additional metal layer extends the diluted plasma frequency deep into the visible spectrum above the second order magnetic resonance of the structure, hence provides a dual band operation with simultaneously negative effective permittivity and permeability. Broadband metamaterials with multiple negative index bands may be possible with the same technique by employing higher order magnetic resonances. The structure can be fabricated with standard microfabrication techniques that have been used to fabricate fishnet metamaterial structures.Comment: 26 Pages, 6 Figures, 2 Tables, 2 Medi

    Colloquium: Nonlinear collective interactions in quantum plasmas with degenerate electron fluids

    Full text link
    The current understanding of some important nonlinear collective processes in quantum plasmas with degenerate electrons is presented. After reviewing the basic properties of quantum plasmas, we present model equations (e.g. the quantum hydrodynamic and effective nonlinear Schr\"odinger-Poisson equations) that describe collective nonlinear phenomena at nanoscales. The effects of the electron degeneracy arise due to Heisenberg's uncertainty principle and Pauli's exclusion principle for overlapping electron wavefunctions that result in tunneling of electrons and the electron degeneracy pressure. Since electrons are Fermions (spin-1/2), there also appears an electron spin current and a spin force acting on electrons due to the Bohr magnetization. The quantum effects produce new aspects of electrostatic (ES) and electromagnetic (EM) waves in a quantum plasma that are summarized in here. Furthermore, we discuss nonlinear features of ES ion waves and electron plasma oscillations (ESOs), as well as the trapping of intense EM waves in quantum electron density cavities. Specifically, simulation studies of the coupled nonlinear Schr\"odinger (NLS) and Poisson equations reveal the formation and dynamics of localized ES structures at nanoscales in a quantum plasma. We also discuss the effect of an external magnetic field on the plasma wave spectra and develop quantum magnetohydrodynamic (Q-MHD) equations. The results are useful for understanding numerous collective phenomena in quantum plasmas, such as those in compact astrophysical objects, in plasma-assisted nanotechnology, and in the next-generation of intense laser-solid density plasma interaction experiments.Comment: 25 pages, 14 figures. To be published in Reviews of Modern Physic

    Active and Fast Tunable Plasmonic Metamaterials

    Get PDF
    Active and Fast Tunable Plasmonic Metamaterials is a research development that has contributed to studying the interaction between light and matter, specifically focusing on the interaction between the electromagnetic field and free electrons in metals. This interaction can be stimulated by the electric component of light, leading to collective oscillations. In the field of nanotechnology, these phenomena have garnered significant interest due to their ability to enable the transmission of both optical signals and electric currents through the same thin metal structure. This presents an opportunity to connect the combined advantages of photonics and electronics within a single platform. This innovation gives rise to a new subfield of photonics known as plasmonic metamaterials.Plasmonic metamaterials are artificial engineering materials whose optical properties can be engineered to generate the desired response to an incident electromagnetic wave. They consist of subwavelength-scale structures which can be understood as the atoms in conventional materials. The collective response of a randomly or periodically ordered ensemble of such meta-atoms defines the properties of the metamaterials, which can be described in terms of parameters such as permittivity, permeability, refractive index, and impedance. At the interface between noble metal particles and dielectric media, collective oscillations of the free electrons in the metal particles can be resonantly excited, known as plasmon resonances. This work considered two plasmon resonances: localised surface plasmon resonances (LSPRs) and propagating surface plasmon polaritons (SPPs).The investigated plasmonic metamaterials, designed with specific structures, were considered for use in various applications, including telecommunications, information processing, sensing, industry, lighting, photovoltaic, metrology, and healthcare. The sample structures are manufactured using metal and dielectric materials as artificial composite materials. It can be used in the electromagnetic spectrum's visible and near-infrared wavelength range. Results obtained proved that artificial composite material can produce a thermal coherent emission at the mid-infrared wavelength range and enable active and fast-tunable optoelectronic devices. Therefore, this work focused on the integrated thermal infrared light source platforms for various applications such as thermal analysis, imaging, security, biosensing, and medical diagnosis. Enabled by Kirchhoff's law of thermal radiation, this work combined the concepts of material absorption with material emission. Hence, the results obtained proved that this approach enhances the overall performance of the active and fast-tunable plasmonic metamaterial in terms of with effortless and fast tunability. This work further considers the narrow line width of the coherent thermal emission, tunable emission, and angular tunable emission at the mid-infrared, which are achieved through plasmonic stacked grating structure (PSGs) and plasmonic infrared absorber structure (PIRAs).Three-dimensional (3D) plasmonic stacked gratings (PSGs) was used to create a tunable plasmonic metamaterial at optical wavelengths ranging from 3 m to 6 m, and from 6m to 9 m. These PSGs are made of a metallic grating with corrugations caused by narrow air openings, followed by a Bragg grating (BG). Additionally, this work demonstrated a thermal radiation source customised for the mid-infrared wavelength range of 3 μm to 5 μm. This source exhibits intriguing characteristics such as high emissivity, narrowband spectra, and sharp angular response capabilities. The proposed thermal emitter consists of a two-dimensional (2D) metallic grating on top of a one-dimensional dielectric BG.Results obtained presented a plasmonic infrared absorber (PIRA) graphene nanostructure designed for a wavelength range of 3 to 14 μm. It was observed and concluded that this wavelength range offers excellent opportunities for detection, especially when targeting gas molecules in the infrared atmospheric windows. The design framework is based on active plasmon control for subwavelength-scale infrared absorbers within the mid-infrared range of the electromagnetic spectrum. Furthermore, this design is useful for applications such as infrared microbolometers, infrared photodetectors, and photovoltaic cells.Finally, the observation and conclusion drawn for the sample of nanostructure used in this work, which consists of an artificial composite arrangement with plasmonic material, can contribute to a highly efficient mid-infrared light source with low power consumption, fast response emissions, and is a cost-effective structure

    Nonlinear aspects of quantum plasma physics

    Full text link
    Dense quantum plasmas are ubiquitous in planetary interiors and in compact astrophysical objects, in semiconductors and micro-mechanical systems, as well as in the next generation intense laser-solid density plasma interaction experiments and in quantum x-ray free-electron lasers. In contrast to classical plasmas, one encounters extremely high plasma number density and low temperature in quantum plasmas. The latter are composed of electrons, positrons and holes, which are degenerate. Positrons (holes) have the same (slightly different) mass as electrons, but opposite charge. The degenerate charged particles (electrons, positrons, holes) follow the Fermi-Dirac statistics. In quantum plasmas, there are new forces associated with i) quantum statistical electron and positron pressures, ii) electron and positron tunneling through the Bohm potential, and iii) electron and positron angular momentum spin. Inclusion of these quantum forces provides possibility of very high-frequency dispersive electrostatic and electromagnetic waves (e.g. in the hard x-ray and gamma rays regimes) having extremely short wavelengths. In this review paper, we present theoretical backgrounds for some important nonlinear aspects of wave-wave and wave-electron interactions in dense quantum plasmas. Specifically, we shall focus on nonlinear electrostatic electron and ion plasma waves, novel aspects of 3D quantum electron fluid turbulence, as well as nonlinearly coupled intense electromagnetic waves and localized plasma wave structures. Also discussed are the phase space kinetic structures and mechanisms that can generate quasi-stationary magnetic fields in dense quantum plasmas. The influence of the external magnetic field and the electron angular momentum spin on the electromagnetic wave dynamics is discussed.Comment: 42 pages, 20 figures, accepted for publication in Physics-Uspekh

    Physics of Thermal QCD

    Full text link
    We give a review of modern theoretical understanding of the physics of QCD at finite temperature. Three temperature regions are studied in details: the low temperature region where the system presents a rarefied pion gas and its properties are described by chiral perturbation theory, the high temperature region where the system is adequately described in terms of quarks and gluons, and the intermediate region where phase transition occurs in some variants of the theory.Comment: Final version of the review to be published in Physics Report
    • …
    corecore