180,800 research outputs found

    Eye movement patterns during the recognition of three-dimensional objects: Preferential fixation of concave surface curvature minima

    Get PDF
    This study used eye movement patterns to examine how high-level shape information is used during 3D object recognition. Eye movements were recorded while observers either actively memorized or passively viewed sets of novel objects, and then during a subsequent recognition memory task. Fixation data were contrasted against different algorithmically generated models of shape analysis based on: (1) regions of internal concave or (2) convex surface curvature discontinuity or (3) external bounding contour. The results showed a preference for fixation at regions of internal local features during both active memorization and passive viewing but also for regions of concave surface curvature during the recognition task. These findings provide new evidence supporting the special functional status of local concave discontinuities in recognition and show how studies of eye movement patterns can elucidate shape information processing in human vision

    Interactive tag maps and tag clouds for the multiscale exploration of large spatio-temporal datasets

    Get PDF
    'Tag clouds' and 'tag maps' are introduced to represent geographically referenced text. In combination, these aspatial and spatial views are used to explore a large structured spatio-temporal data set by providing overviews and filtering by text and geography. Prototypes are implemented using freely available technologies including Google Earth and Yahoo! 's Tag Map applet. The interactive tag map and tag cloud techniques and the rapid prototyping method used are informally evaluated through successes and limitations encountered. Preliminary evaluation suggests that the techniques may be useful for generating insights when visualizing large data sets containing geo-referenced text strings. The rapid prototyping approach enabled the technique to be developed and evaluated, leading to geovisualization through which a number of ideas were generated. Limitations of this approach are reflected upon. Tag placement, generalisation and prominence at different scales are issues which have come to light in this study that warrant further work

    Human spontaneous gaze patterns in viewing of faces of different species

    Get PDF
    Human studies have reported clear differences in perceptual and neural processing of faces of different species, implying the contribution of visual experience to face perception. Can these differences be manifested in our eye scanning patterns while extracting salient facial information? Here we systematically compared non-pet owners’ gaze patterns while exploring human, monkey, dog and cat faces in a passive viewing task. Our analysis revealed that the faces of different species induced similar patterns of fixation distribution between left and right hemi-face, and among key local facial features with the eyes attracting the highest proportion of fixations and viewing times, followed by the nose and then the mouth. Only the proportion of fixation directed at the mouth region was species-dependent and could be differentiated at the earliest stage of face viewing. It seems that our spontaneous eye scanning patterns associated with face exploration were mainly constrained by general facial configurations; the species affiliation of the inspected faces had limited impact on gaze allocation, at least under free viewing conditions

    Geologic information from satellite images

    Get PDF
    The author has identified the following significant results. Extracting geologic information from ERTS and Skylab/EREP images is best done by a geologist trained in photointerpretation. The information is at a regional scale, and three basic types are available: rock and soil, geologic structures, and landforms. Discrimination between alluvium and sedimentary or crystalline bedrock, and between units in thick sedimentary sequences is best, primarily because of topographic expression and vegetation differences. Discrimination between crystalline rock types is poor. Folds and fractures are the best displayed geologic features. They are recognizable by topographic expression, drainage patterns, and rock or vegetation tonal patterns. Landforms are easily discriminated by their familar shapes and patterns. It is possible to optimize the scale, format, spectral bands, conditions of acquisition, and sensor systems for best geologic interpretation. Several examples demonstrate the applicability of satellite images to tectonic analysis and petroleum and mineral exploration

    DPVis: Visual Analytics with Hidden Markov Models for Disease Progression Pathways

    Full text link
    Clinical researchers use disease progression models to understand patient status and characterize progression patterns from longitudinal health records. One approach for disease progression modeling is to describe patient status using a small number of states that represent distinctive distributions over a set of observed measures. Hidden Markov models (HMMs) and its variants are a class of models that both discover these states and make inferences of health states for patients. Despite the advantages of using the algorithms for discovering interesting patterns, it still remains challenging for medical experts to interpret model outputs, understand complex modeling parameters, and clinically make sense of the patterns. To tackle these problems, we conducted a design study with clinical scientists, statisticians, and visualization experts, with the goal to investigate disease progression pathways of chronic diseases, namely type 1 diabetes (T1D), Huntington's disease, Parkinson's disease, and chronic obstructive pulmonary disease (COPD). As a result, we introduce DPVis which seamlessly integrates model parameters and outcomes of HMMs into interpretable and interactive visualizations. In this study, we demonstrate that DPVis is successful in evaluating disease progression models, visually summarizing disease states, interactively exploring disease progression patterns, and building, analyzing, and comparing clinically relevant patient subgroups.Comment: to appear at IEEE Transactions on Visualization and Computer Graphic

    Visualization Techniques for Tongue Analysis in Traditional Chinese Medicine

    Get PDF
    Visual inspection of the tongue has been an important diagnostic method of Traditional Chinese Medicine (TCM). Clinic data have shown significant connections between various viscera cancers and abnormalities in the tongue and the tongue coating. Visual inspection of the tongue is simple and inexpensive, but the current practice in TCM is mainly experience-based and the quality of the visual inspection varies between individuals. The computerized inspection method provides quantitative models to evaluate color, texture and surface features on the tongue. In this paper, we investigate visualization techniques and processes to allow interactive data analysis with the aim to merge computerized measurements with human expert's diagnostic variables based on five-scale diagnostic conditions: Healthy (H), History Cancers (HC), History of Polyps (HP), Polyps (P) and Colon Cancer (C)

    Excerpts from selected LANDSAT 1 final reports in geology

    Get PDF
    The standard formats for the summaries of selected LANDSAT geological data are presented as checklists. These include: (1) value of LANDSAT data to geology, (2) geologic benefits, (3) follow up studies, (4) cost benefits, (5) optimistic working scales, (6) statistical analysis, and (7) enhancement effects

    Connecting the dots: a multi-pivot approach to data exploration

    No full text
    The purpose of data browsers is to help users identify and query data effectively without being overwhelmed by large complex graphs of data. A proposed solution to identify and query data in graph-based datasets is Pivoting (or set-oriented browsing), a many-to-many graph browsing technique that allows users to navigate the graph by starting from a set of instances followed by navigation through common links. Relying solely on navigation, however, makes it difficult for users to find paths or even see if the element of interest is in the graph when the points of interest may be many vertices apart. Further challenges include finding paths which require combinations of forward and backward links in order to make the necessary connections which further adds to the complexity of pivoting. In order to mitigate the effects of these problems and enhance the strengths of pivoting we present a multi-pivot approach which we embodied in tool called Visor. Visor allows users to explore from multiple points in the graph, helping users connect key points of interest in the graph on the conceptual level, visually occluding the remainder parts of the graph, thus helping create a road-map for navigation. We carried out an user study to demonstrate the viability of our approach

    Understanding Communication Patterns in MOOCs: Combining Data Mining and qualitative methods

    Full text link
    Massive Open Online Courses (MOOCs) offer unprecedented opportunities to learn at scale. Within a few years, the phenomenon of crowd-based learning has gained enormous popularity with millions of learners across the globe participating in courses ranging from Popular Music to Astrophysics. They have captured the imaginations of many, attracting significant media attention - with The New York Times naming 2012 "The Year of the MOOC." For those engaged in learning analytics and educational data mining, MOOCs have provided an exciting opportunity to develop innovative methodologies that harness big data in education.Comment: Preprint of a chapter to appear in "Data Mining and Learning Analytics: Applications in Educational Research
    • 

    corecore