23,728 research outputs found

    Non-hierarchical Structures: How to Model and Index Overlaps?

    Full text link
    Overlap is a common phenomenon seen when structural components of a digital object are neither disjoint nor nested inside each other. Overlapping components resist reduction to a structural hierarchy, and tree-based indexing and query processing techniques cannot be used for them. Our solution to this data modeling problem is TGSA (Tree-like Graph for Structural Annotations), a novel extension of the XML data model for non-hierarchical structures. We introduce an algorithm for constructing TGSA from annotated documents; the algorithm can efficiently process non-hierarchical structures and is associated with formal proofs, ensuring that transformation of the document to the data model is valid. To enable high performance query analysis in large data repositories, we further introduce an extension of XML pre-post indexing for non-hierarchical structures, which can process both reachability and overlapping relationships.Comment: The paper has been accepted at the Balisage 2014 conferenc

    Hierarchical Losses and New Resources for Fine-grained Entity Typing and Linking

    Full text link
    Extraction from raw text to a knowledge base of entities and fine-grained types is often cast as prediction into a flat set of entity and type labels, neglecting the rich hierarchies over types and entities contained in curated ontologies. Previous attempts to incorporate hierarchical structure have yielded little benefit and are restricted to shallow ontologies. This paper presents new methods using real and complex bilinear mappings for integrating hierarchical information, yielding substantial improvement over flat predictions in entity linking and fine-grained entity typing, and achieving new state-of-the-art results for end-to-end models on the benchmark FIGER dataset. We also present two new human-annotated datasets containing wide and deep hierarchies which we will release to the community to encourage further research in this direction: MedMentions, a collection of PubMed abstracts in which 246k mentions have been mapped to the massive UMLS ontology; and TypeNet, which aligns Freebase types with the WordNet hierarchy to obtain nearly 2k entity types. In experiments on all three datasets we show substantial gains from hierarchy-aware training.Comment: ACL 201

    Acquiring Word-Meaning Mappings for Natural Language Interfaces

    Full text link
    This paper focuses on a system, WOLFIE (WOrd Learning From Interpreted Examples), that acquires a semantic lexicon from a corpus of sentences paired with semantic representations. The lexicon learned consists of phrases paired with meaning representations. WOLFIE is part of an integrated system that learns to transform sentences into representations such as logical database queries. Experimental results are presented demonstrating WOLFIE's ability to learn useful lexicons for a database interface in four different natural languages. The usefulness of the lexicons learned by WOLFIE are compared to those acquired by a similar system, with results favorable to WOLFIE. A second set of experiments demonstrates WOLFIE's ability to scale to larger and more difficult, albeit artificially generated, corpora. In natural language acquisition, it is difficult to gather the annotated data needed for supervised learning; however, unannotated data is fairly plentiful. Active learning methods attempt to select for annotation and training only the most informative examples, and therefore are potentially very useful in natural language applications. However, most results to date for active learning have only considered standard classification tasks. To reduce annotation effort while maintaining accuracy, we apply active learning to semantic lexicons. We show that active learning can significantly reduce the number of annotated examples required to achieve a given level of performance

    From Paraphrase Database to Compositional Paraphrase Model and Back

    Full text link
    The Paraphrase Database (PPDB; Ganitkevitch et al., 2013) is an extensive semantic resource, consisting of a list of phrase pairs with (heuristic) confidence estimates. However, it is still unclear how it can best be used, due to the heuristic nature of the confidences and its necessarily incomplete coverage. We propose models to leverage the phrase pairs from the PPDB to build parametric paraphrase models that score paraphrase pairs more accurately than the PPDB's internal scores while simultaneously improving its coverage. They allow for learning phrase embeddings as well as improved word embeddings. Moreover, we introduce two new, manually annotated datasets to evaluate short-phrase paraphrasing models. Using our paraphrase model trained using PPDB, we achieve state-of-the-art results on standard word and bigram similarity tasks and beat strong baselines on our new short phrase paraphrase tasks.Comment: 2015 TACL paper updated with an appendix describing new 300 dimensional embeddings. Submitted 1/2015. Accepted 2/2015. Published 6/201

    PadChest: A large chest x-ray image dataset with multi-label annotated reports

    Get PDF
    We present a labeled large-scale, high resolution chest x-ray dataset for the automated exploration of medical images along with their associated reports. This dataset includes more than 160,000 images obtained from 67,000 patients that were interpreted and reported by radiologists at Hospital San Juan Hospital (Spain) from 2009 to 2017, covering six different position views and additional information on image acquisition and patient demography. The reports were labeled with 174 different radiographic findings, 19 differential diagnoses and 104 anatomic locations organized as a hierarchical taxonomy and mapped onto standard Unified Medical Language System (UMLS) terminology. Of these reports, 27% were manually annotated by trained physicians and the remaining set was labeled using a supervised method based on a recurrent neural network with attention mechanisms. The labels generated were then validated in an independent test set achieving a 0.93 Micro-F1 score. To the best of our knowledge, this is one of the largest public chest x-ray database suitable for training supervised models concerning radiographs, and the first to contain radiographic reports in Spanish. The PadChest dataset can be downloaded from http://bimcv.cipf.es/bimcv-projects/padchest/

    Weakly-supervised Visual Grounding of Phrases with Linguistic Structures

    Full text link
    We propose a weakly-supervised approach that takes image-sentence pairs as input and learns to visually ground (i.e., localize) arbitrary linguistic phrases, in the form of spatial attention masks. Specifically, the model is trained with images and their associated image-level captions, without any explicit region-to-phrase correspondence annotations. To this end, we introduce an end-to-end model which learns visual groundings of phrases with two types of carefully designed loss functions. In addition to the standard discriminative loss, which enforces that attended image regions and phrases are consistently encoded, we propose a novel structural loss which makes use of the parse tree structures induced by the sentences. In particular, we ensure complementarity among the attention masks that correspond to sibling noun phrases, and compositionality of attention masks among the children and parent phrases, as defined by the sentence parse tree. We validate the effectiveness of our approach on the Microsoft COCO and Visual Genome datasets.Comment: CVPR 201
    corecore