539 research outputs found

    Delays in IP routers, a Markov model

    Get PDF
    Delays in routers are an important component of end-to-end delay and therefore have a significant impact on quality of service. While the other component, the propagation time, is easy to predict as the distance divided by the speed of light inside the link, the queueing delays of packets inside routers depend on the current, usually dynamically changing congestion and on the stochastic features of the flows. We use a Markov model taking into account the distribution of the size of packets and self-similarity of incoming flows to investigate their impact on the queueing delays and their dynamics

    Persistence time of SIS infections in heterogeneous populations and networks

    Get PDF
    For a susceptible-infectious-susceptible (SIS) infection model in a heterogeneous population, we present simple formulae giving the leading-order asymptotic (large population) behaviour of the mean persistence time, from an endemic state to extinction of infection. Our model may be interpreted as describing an infection spreading through either (i) a population with heterogeneity in individuals' susceptibility and/or infectiousness; or (ii) a heterogeneous directed network. Using our asymptotic formulae, we show that such heterogeneity can only reduce (to leading order) the mean persistence time compared to a corresponding homogeneous population, and that the greater the degree of heterogeneity, the more quickly infection will die out

    Diffusion Models for Double-ended Queues with Renewal Arrival Processes

    Full text link
    We study a double-ended queue where buyers and sellers arrive to conduct trades. When there is a pair of buyer and seller in the system, they immediately transact a trade and leave. Thus there cannot be non-zero number of buyers and sellers simultaneously in the system. We assume that sellers and buyers arrive at the system according to independent renewal processes, and they would leave the system after independent exponential patience times. We establish fluid and diffusion approximations for the queue length process under a suitable asymptotic regime. The fluid limit is the solution of an ordinary differential equation, and the diffusion limit is a time-inhomogeneous asymmetric Ornstein-Uhlenbeck process (O-U process). A heavy traffic analysis is also developed, and the diffusion limit in the stronger heavy traffic regime is a time-homogeneous asymmetric O-U process. The limiting distributions of both diffusion limits are obtained. We also show the interchange of the heavy traffic and steady state limits

    Bayesian prediction of the transient behaviour and busy period in short and long-tailed GI/G/1 queueing systems

    Get PDF
    Bayesian inference for the transient behavior and duration of a busy period in a single server queueing system with general, unknown distributions for the interarrival and service times is investigated. Both the interarrival and service time distributions are approximated using the dense family of Coxian distributions. A suitable reparameterization allows the definition of a non-informative prior and Bayesian inference is then undertaken using reversible jump Markov chain Monte Carlo methods. An advantage of the proposed procedure is that heavy tailed interarrival and service time distributions such as the Pareto can be well approximated. The proposed procedure for estimating the system measures is based on recent theoretical results for the Coxian/Coxian/1 system. A numerical technique is developed for every MCMC iteration so that the transient queue length and waiting time distributions and the duration of a busy period can be estimated. The approach is illustrated with both simulated and real data

    Meter-scale spark X-ray spectrumstatistics

    Get PDF
    X-ray emission by sparks implies bremsstrahlung from a population of energetic electrons, but the details of this process remain a mystery. We present detailed statistical analysis of X-ray spectra detected by multiple detectors during sparks produced by 1 MV negative high-voltage pulses with 1 μ\mus risetime. With over 900 shots, we statistically analyze the signals, assuming that the distribution of spark X-ray fluence behaves as a power law and that the energy spectrum of X-rays detectable after traversing \sim2 m of air and a thin aluminum shield is exponential. We then determine the parameters of those distributions by fitting cumulative distribution functions to the observations. The fit results match the observations very well if the mean of the exponential X-ray energy distribution is 86 ±\pm 7 keV and the spark X-ray fluence power law distribution has index -1.29 ±\pm 0.04 and spans at least 3 orders of magnitude in fluence
    corecore