852 research outputs found

    Multilingual Part-of-Speech Tagging: Two Unsupervised Approaches

    Full text link
    We demonstrate the effectiveness of multilingual learning for unsupervised part-of-speech tagging. The central assumption of our work is that by combining cues from multiple languages, the structure of each becomes more apparent. We consider two ways of applying this intuition to the problem of unsupervised part-of-speech tagging: a model that directly merges tag structures for a pair of languages into a single sequence and a second model which instead incorporates multilingual context using latent variables. Both approaches are formulated as hierarchical Bayesian models, using Markov Chain Monte Carlo sampling techniques for inference. Our results demonstrate that by incorporating multilingual evidence we can achieve impressive performance gains across a range of scenarios. We also found that performance improves steadily as the number of available languages increases

    Predicting Linguistic Structure with Incomplete and Cross-Lingual Supervision

    Get PDF
    Contemporary approaches to natural language processing are predominantly based on statistical machine learning from large amounts of text, which has been manually annotated with the linguistic structure of interest. However, such complete supervision is currently only available for the world's major languages, in a limited number of domains and for a limited range of tasks. As an alternative, this dissertation considers methods for linguistic structure prediction that can make use of incomplete and cross-lingual supervision, with the prospect of making linguistic processing tools more widely available at a lower cost. An overarching theme of this work is the use of structured discriminative latent variable models for learning with indirect and ambiguous supervision; as instantiated, these models admit rich model features while retaining efficient learning and inference properties. The first contribution to this end is a latent-variable model for fine-grained sentiment analysis with coarse-grained indirect supervision. The second is a model for cross-lingual word-cluster induction and the application thereof to cross-lingual model transfer. The third is a method for adapting multi-source discriminative cross-lingual transfer models to target languages, by means of typologically informed selective parameter sharing. The fourth is an ambiguity-aware self- and ensemble-training algorithm, which is applied to target language adaptation and relexicalization of delexicalized cross-lingual transfer parsers. The fifth is a set of sequence-labeling models that combine constraints at the level of tokens and types, and an instantiation of these models for part-of-speech tagging with incomplete cross-lingual and crowdsourced supervision. In addition to these contributions, comprehensive overviews are provided of structured prediction with no or incomplete supervision, as well as of learning in the multilingual and cross-lingual settings. Through careful empirical evaluation, it is established that the proposed methods can be used to create substantially more accurate tools for linguistic processing, compared to both unsupervised methods and to recently proposed cross-lingual methods. The empirical support for this claim is particularly strong in the latter case; our models for syntactic dependency parsing and part-of-speech tagging achieve the hitherto best published results for a wide number of target languages, in the setting where no annotated training data is available in the target language

    Character-level and syntax-level models for low-resource and multilingual natural language processing

    Get PDF
    There are more than 7000 languages in the world, but only a small portion of them benefit from Natural Language Processing resources and models. Although languages generally present different characteristics, “cross-lingual bridges” can be exploited, such as transliteration signals and word alignment links. Such information, together with the availability of multiparallel corpora and the urge to overcome language barriers, motivates us to build models that represent more of the world’s languages. This thesis investigates cross-lingual links for improving the processing of low-resource languages with language-agnostic models at the character and syntax level. Specifically, we propose to (i) use orthographic similarities and transliteration between Named Entities and rare words in different languages to improve the construction of Bilingual Word Embeddings (BWEs) and named entity resources, and (ii) exploit multiparallel corpora for projecting labels from high- to low-resource languages, thereby gaining access to weakly supervised processing methods for the latter. In the first publication, we describe our approach for improving the translation of rare words and named entities for the Bilingual Dictionary Induction (BDI) task, using orthography and transliteration information. In our second work, we tackle BDI by enriching BWEs with orthography embeddings and a number of other features, using our classification-based system to overcome script differences among languages. The third publication describes cheap cross-lingual signals that should be considered when building mapping approaches for BWEs since they are simple to extract, effective for bootstrapping the mapping of BWEs, and overcome the failure of unsupervised methods. The fourth paper shows our approach for extracting a named entity resource for 1340 languages, including very low-resource languages from all major areas of linguistic diversity. We exploit parallel corpus statistics and transliteration models and obtain improved performance over prior work. Lastly, the fifth work models annotation projection as a graph-based label propagation problem for the part of speech tagging task. Part of speech models trained on our labeled sets outperform prior work for low-resource languages like Bambara (an African language spoken in Mali), Erzya (a Uralic language spoken in Russia’s Republic of Mordovia), Manx (the Celtic language of the Isle of Man), and Yoruba (a Niger-Congo language spoken in Nigeria and surrounding countries)

    Data sparsity in highly inflected languages: the case of morphosyntactic tagging in Polish

    Get PDF
    In morphologically complex languages, many high-level tasks in natural language processing rely on accurate morphosyntactic analyses of the input. However, in light of the risk of error propagation in present-day pipeline architectures for basic linguistic pre-processing, the state of the art for morphosyntactic tagging is still not satisfactory. The main obstacle here is data sparsity inherent to natural lan- guage in general and highly inflected languages in particular. In this work, we investigate whether semi-supervised systems may alleviate the data sparsity problem. Our approach uses word clusters obtained from large amounts of unlabelled text in an unsupervised manner in order to provide a su- pervised probabilistic tagger with morphologically informed features. Our evalua- tions on a number of datasets for the Polish language suggest that this simple technique improves tagging accuracy, especially with regard to out-of-vocabulary words. This may prove useful to increase cross-domain performance of taggers, and to alleviate the dependency on large amounts of supervised training data, which is especially important from the perspective of less-resourced languages

    Unsupervised multilingual learning

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 241-254).For centuries, scholars have explored the deep links among human languages. In this thesis, we present a class of probabilistic models that exploit these links as a form of naturally occurring supervision. These models allow us to substantially improve performance for core text processing tasks, such as morphological segmentation, part-of-speech tagging, and syntactic parsing. Besides these traditional NLP tasks, we also present a multilingual model for lost language deciphersment. We test this model on the ancient Ugaritic language. Our results show that we can automatically uncover much of the historical relationship between Ugaritic and Biblical Hebrew, a known related language.by Benjamin Snyder.Ph.D

    Practical Natural Language Processing for Low-Resource Languages.

    Full text link
    As the Internet and World Wide Web have continued to gain widespread adoption, the linguistic diversity represented has also been growing. Simultaneously the field of Linguistics is facing a crisis of the opposite sort. Languages are becoming extinct faster than ever before and linguists now estimate that the world could lose more than half of its linguistic diversity by the year 2100. This is a special time for Computational Linguistics; this field has unprecedented access to a great number of low-resource languages, readily available to be studied, but needs to act quickly before political, social, and economic pressures cause these languages to disappear from the Web. Most work in Computational Linguistics and Natural Language Processing (NLP) focuses on English or other languages that have text corpora of hundreds of millions of words. In this work, we present methods for automatically building NLP tools for low-resource languages with minimal need for human annotation in these languages. We start first with language identification, specifically focusing on word-level language identification, an understudied variant that is necessary for processing Web text and develop highly accurate machine learning methods for this problem. From there we move onto the problems of part-of-speech tagging and dependency parsing. With both of these problems we extend the current state of the art in projected learning to make use of multiple high-resource source languages instead of just a single language. In both tasks, we are able to improve on the best current methods. All of these tools are practically realized in the "Minority Language Server," an online tool that brings these techniques together with low-resource language text on the Web. The Minority Language Server, starting with only a few words in a language can automatically collect text in a language, identify its language and tag its parts of speech. We hope that this system is able to provide a convincing proof of concept for the automatic collection and processing of low-resource language text from the Web, and one that can hopefully be realized before it is too late.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113373/1/benking_1.pd
    • …
    corecore