901 research outputs found

    Evolving modular soft robots without explicit inter-module communication using local self-attention

    Get PDF
    Modularity in robotics holds great potential. In principle, modular robots can be disassembled and reassembled in different robots, and possibly perform new tasks. Nevertheless, actually exploiting modularity is yet an unsolved problem: controllers usually rely on inter-module communication, a practical requirement that makes modules not perfectly interchangeable and thus limits their flexibility. Here, we focus on Voxel-based Soft Robots (VSRs), aggregations of mechanically identical elastic blocks. We use the same neural controller inside each voxel, but without any inter-voxel communication, hence enabling ideal conditions for modularity: modules are all equal and interchangeable. We optimize the parameters of the neural controller—shared among the voxels—by evolutionary computation. Crucially, we use a local self-attention mechanism inside the controller to overcome the absence of inter-module communication channels, thus enabling our robots to truly be driven by the collective intelligence of their modules. We show experimentally that the evolved robots are effective in the task of locomotion: thanks to self-attention, instances of the same controller embodied in the same robot can focus on different inputs. We also find that the evolved controllers generalize to unseen morphologies, after a short fine-tuning, suggesting that an inductive bias related to the task arises from true modularity

    Heterogeneous Self-Reconfiguring Robotics: Ph.D. Thesis Proposal

    Get PDF
    Self-reconfiguring robots are modular systems that can change shape, or reconfigure, to match structure to task. They comprise many small, discrete, often identical modules that connect together and that are minimally actuated. Global shape transformation is achieved by composing local motions. Systems with a single module type, known as homogeneous systems, gain fault tolerance, robustness and low production cost from module interchangeability. However, we are interested in heterogeneous systems, which include multiple types of modules such as those with sensors, batteries or wheels. We believe that heterogeneous systems offer the same benefits as homogeneous systems with the added ability to match not only structure to task, but also capability to task. Although significant results have been achieved in understanding homogeneous systems, research in heterogeneous systems is challenging as key algorithmic issues remain unexplored. We propose in this thesis to investigate questions in four main areas: 1) how to classify heterogeneous systems, 2) how to develop efficient heterogeneous reconfiguration algorithms with desired characteristics, 3) how to characterize the complexity of key algorithmic problems, and 4) how to apply these heterogeneous algorithms to perform useful new tasks in simulation and in the physical world. Our goal is to develop an algorithmic basis for heterogeneous systems. This has theoretical significance in that it addresses a major open problem in the field, and practical significance in providing self-reconfiguring robots with increased capabilities

    A Plug and Produce Framework for Industrial Collaborative Robots

    Get PDF

    Roles '07 – Proceedings of the 2nd Workshop on Roles and Relationships in Object Oriented Programming, Multiagent Systems, and Ontologies : workshop co-located with ECOOP 2007 Berlin, July 30 and 31, 2007

    Get PDF
    Roles are a truly ubiquitous notion: like classes, objects, and relationships, they pervade the vocabulary of all disciplines that deal with the nature of things and how these things relate to each other. In fact, it seems that roles are so fundamental a notion that they must be granted the status of an ontological primitive. The definition of roles depends on the definition of relationships. With the advent of Object Technology, however, relationships have moved out of the focus of attention, giving way to the more restricted concept of attributes or, more technically, references to other ob- jects. A reference is tied to the object holding it and as such is asymmetric – at most the target of the reference can be associated with a role. This is counter to the intuition that every role should have at least one counter-role, namely the one it interacts with. It seems that the natural role of roles in object-oriented designs can only be restored by installing relationships (collaborations, teams, etc.) as first-class programming concepts. By contrast, the relational nature of roles is already acknowl- edged in the area of Multiagent Systems, since roles are related to the interaction among agents and to communication protocols. However, in this area there is no convergence on a single definition of roles yet, and different points of view, such as agent software en- gineering, specification languages, agent communication, or agent programming languages, make different use of roles. Like its pre- decessor “Roles, an interdisciplinary perspective” (Roles’05) held at the AAAI 2005 Fall Symposium (see the website of the Symposium http://www.aaai.org/Press/Reports/Symposia/Fall/fs-05-08.php), this workshop aimed at gathering researchers from different dis- ciplines to foster interchange of knowledge and ideas concerning roles and relationships, and in particular to converge on ontolog- ically founded proposals which can be applied to programming and agent languages

    On microelectronic self-learning cognitive chip systems

    Get PDF
    After a brief review of machine learning techniques and applications, this Ph.D. thesis examines several approaches for implementing machine learning architectures and algorithms into hardware within our laboratory. From this interdisciplinary background support, we have motivations for novel approaches that we intend to follow as an objective of innovative hardware implementations of dynamically self-reconfigurable logic for enhanced self-adaptive, self-(re)organizing and eventually self-assembling machine learning systems, while developing this new particular area of research. And after reviewing some relevant background of robotic control methods followed by most recent advanced cognitive controllers, this Ph.D. thesis suggests that amongst many well-known ways of designing operational technologies, the design methodologies of those leading-edge high-tech devices such as cognitive chips that may well lead to intelligent machines exhibiting conscious phenomena should crucially be restricted to extremely well defined constraints. Roboticists also need those as specifications to help decide upfront on otherwise infinitely free hardware/software design details. In addition and most importantly, we propose these specifications as methodological guidelines tightly related to ethics and the nowadays well-identified workings of the human body and of its psyche

    Lean manual assembly 4.0: A systematic review

    Get PDF
    In a demand context of mass customization, shifting towards the mass personalization of products, assembly operations face the trade-off between highly productive automated systems and flexible manual operators. Novel digital technologies—conceptualized as Industry 4.0—suggest the possibility of simultaneously achieving superior productivity and flexibility. This article aims to address how Industry 4.0 technologies could improve the productivity, flexibility and quality of assembly operations. A systematic literature review was carried out, including 234 peer-reviewed articles from 2010–2020. As a result, the analysis was structured addressing four sets of research questions regarding (1) assembly for mass customization; (2) Industry 4.0 and performance evaluation; (3) Lean production as a starting point for smart factories, and (4) the implications of Industry 4.0 for people in assembly operations. It was found that mass customization brings great complexity that needs to be addressed at different levels from a holistic point of view; that Industry 4.0 offers powerful tools to achieve superior productivity and flexibility in assembly; that Lean is a great starting point for implementing such changes; and that people need to be considered central to Assembly 4.0. Developing methodologies for implementing Industry 4.0 to achieve specific business goals remains an open research topic
    • …
    corecore