6,019 research outputs found

    Silhouette-based gait recognition using Procrustes shape analysis and elliptic Fourier descriptors

    Get PDF
    This paper presents a gait recognition method which combines spatio-temporal motion characteristics, statistical and physical parameters (referred to as STM-SPP) of a human subject for its classification by analysing shape of the subject's silhouette contours using Procrustes shape analysis (PSA) and elliptic Fourier descriptors (EFDs). STM-SPP uses spatio-temporal gait characteristics and physical parameters of human body to resolve similar dissimilarity scores between probe and gallery sequences obtained by PSA. A part-based shape analysis using EFDs is also introduced to achieve robustness against carrying conditions. The classification results by PSA and EFDs are combined, resolving tie in ranking using contour matching based on Hu moments. Experimental results show STM-SPP outperforms several silhouette-based gait recognition methods

    A stochastic large deformation model for computational anatomy

    Get PDF
    In the study of shapes of human organs using computational anatomy, variations are found to arise from inter-subject anatomical differences, disease-specific effects, and measurement noise. This paper introduces a stochastic model for incorporating random variations into the Large Deformation Diffeomorphic Metric Mapping (LDDMM) framework. By accounting for randomness in a particular setup which is crafted to fit the geometrical properties of LDDMM, we formulate the template estimation problem for landmarks with noise and give two methods for efficiently estimating the parameters of the noise fields from a prescribed data set. One method directly approximates the time evolution of the variance of each landmark by a finite set of differential equations, and the other is based on an Expectation-Maximisation algorithm. In the second method, the evaluation of the data likelihood is achieved without registering the landmarks, by applying bridge sampling using a stochastically perturbed version of the large deformation gradient flow algorithm. The method and the estimation algorithms are experimentally validated on synthetic examples and shape data of human corpora callosa

    Bayesian matching of unlabeled marked point sets using random fields, with an application to molecular alignment

    Full text link
    Statistical methodology is proposed for comparing unlabeled marked point sets, with an application to aligning steroid molecules in chemoinformatics. Methods from statistical shape analysis are combined with techniques for predicting random fields in spatial statistics in order to define a suitable measure of similarity between two marked point sets. Bayesian modeling of the predicted field overlap between pairs of point sets is proposed, and posterior inference of the alignment is carried out using Markov chain Monte Carlo simulation. By representing the fields in reproducing kernel Hilbert spaces, the degree of overlap can be computed without expensive numerical integration. Superimposing entire fields rather than the configuration matrices of point coordinates thereby avoids the problem that there is usually no clear one-to-one correspondence between the points. In addition, mask parameters are introduced in the model, so that partial matching of the marked point sets can be carried out. We also propose an adaptation of the generalized Procrustes analysis algorithm for the simultaneous alignment of multiple point sets. The methodology is illustrated with a simulation study and then applied to a data set of 31 steroid molecules, where the relationship between shape and binding activity to the corticosteroid binding globulin receptor is explored.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS486 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Perceptually Motivated Shape Context Which Uses Shape Interiors

    Full text link
    In this paper, we identify some of the limitations of current-day shape matching techniques. We provide examples of how contour-based shape matching techniques cannot provide a good match for certain visually similar shapes. To overcome this limitation, we propose a perceptually motivated variant of the well-known shape context descriptor. We identify that the interior properties of the shape play an important role in object recognition and develop a descriptor that captures these interior properties. We show that our method can easily be augmented with any other shape matching algorithm. We also show from our experiments that the use of our descriptor can significantly improve the retrieval rates
    • ā€¦
    corecore