5,669 research outputs found

    Modeling and predicting market risk with Laplace-Gaussian mixture distributions

    Get PDF
    While much of classical statistical analysis is based on Gaussian distributional assumptions, statistical modeling with the Laplace distribution has gained importance in many applied fields. This phenomenon is rooted in the fact that, like the Gaussian, the Laplace distribution has many attractive properties. This paper investigates two methods of combining them and their use in modeling and predicting financial risk. Based on 25 daily stock return series, the empirical results indicate that the new models offer a plausible description of the data. They are also shown to be competitive with, or superior to, use of the hyperbolic distribution, which has gained some popularity in asset-return modeling and, in fact, also nests the Gaussian and Laplace. Klassifikation: C16, C50 . March 2005

    Pricing and Inference with Mixtures of Conditionally Normal Processes.

    Get PDF
    We consider the problems of derivative pricing and inference when the stochastic discount factor has an exponential-affine form and the geometric return of the underlying asset has a dynamics characterized by a mixture of conditionally Normal processes. We consider both the static case in which the underlying process is a white noise distributed as a mixture of Gaussian distributions (including extreme risks and jump diffusions) and the dynamic case in which the underlying process is conditionally distributed as a mixture of Gaussian laws. Semi-parametric, non parametric and Switching Regime situations are also considered. In all cases, the risk-neutral processes and explicit pricing formulas are obtained.Derivative Pricing ; Stochastic Discount Factor ; Implied Volatility, Mixture of Normal Distributions ; Mixture of Conditionally Normal Processes ; Nonparametric Kernel Estimation ; Mixed-Normal GARCH Processes ; Switching Regime Models.

    Bayesian estimation of the gaussian mixture garch model

    Get PDF
    In this paper, we perform Bayesian inference and prediction for a GARCH model where the innovations are assumed to follow a mixture of two Gaussian distributions. This GARCH model can capture the patterns usually exhibited by many financial time series such as volatility clustering, large kurtosis and extreme observations. A Griddy-Gibbs sampler implementation is proposed for parameter estimation and volatility prediction. The method is illustrated using the Swiss Market Index

    Pareto Improving Social Security Reform when Financial Markets are Incomplete!?

    Get PDF
    While much of classical statistical analysis is based on Gaussian distributional assumptions, statistical modeling with the Laplace distribution has gained importance in many applied fields. This phenomenon is rooted in the fact that, like the Gaussian, the Laplace distribution has many attractive properties. This paper investigates two methods of combining them and their use in modeling and predicting financial risk. Based on 25 daily stock return series, the empirical results indicate that the new models offer a plausible description of the data. They are also shown to be competitive with, or superior to, use of the hyperbolic distribution, which has gained some popularity in asset-return modeling and, in fact, also nests the Gaussian and Laplace.GARCH, Hyperbolic Distribution, Kurtosis, Laplace Distribution, Mixture Distributions, Stock Market Returns

    BAYESIAN ESTIMATION OF THE GAUSSIAN MIXTURE GARCH MODEL

    Get PDF
    In this paper, we perform Bayesian inference and prediction for a GARCH model where the innovations are assumed to follow a mixture of two Gaussian distributions. This GARCH model can capture the patterns usually exhibited by many financial time series such as volatility clustering, large kurtosis and extreme observations. A Griddy-Gibbs sampler implementation is proposed for parameter estimation and volatility prediction. The method is illustrated using the Swiss Market Index.

    The Applications of Mixtures of Normal Distributions in Empirical Finance: A Selected Survey

    Get PDF
    This paper provides a selected review of the recent developments and applications of mixtures of normal (MN) distribution models in empirical finance. Once attractive property of the MN model is that it is flexible enough to accommodate various shapes of continuous distributions, and able to capture leptokurtic, skewed and multimodal characteristics of financial time series data. In addition, the MN-based analysis fits well with the related regime-switching literature. The survey is conducted under two broad themes: (1) minimum-distance estimation methods, and (2) financial modeling and its applications.Mixtures of Normal, Maximum Likelihood, Moment Generating Function, Characteristic Function, Switching Regression Model, (G) ARCH Model, Stochastic Volatility Model, Autoregressive Conditional Duration Model, Stochastic Duration Model, Value at Risk.

    Does trading volume really explain stock returns volatility?

    Get PDF
    Assuming that the variance of daily price changes and trading volume are both driven by the same latent variable measuring the number of price-relevant information arriving on the market, the Mixture of Distribution Hypothesis (MDH) represents an intuitive and appealing explanation for the empirically observed correlation between volume and volatility of speculative assets. This paper investigates to which extent the temporal dependence of volatility and volume is compatible with a MDH model through a systematic analysis of the long memory properties of power transformations of both series. It is found that the fractional differencing parameter of the volatility series reaches its maximum for a power transformation around and then decreases for other order moments while the differencing parameter of the trading volume remains remarkably unchanged. The volatility process thus exhibits a high degree of intermittence whereas the volume dynamic appears much smoother. The results suggest that volatility and volume may share common short-term movements but that their long-run behavior is fundamentally different.Volatility Persistence, Long Memory, Trading Volume
    corecore