1,236 research outputs found

    A Computational Study of Genetic Crossover Operators for Multi-Objective Vehicle Routing Problem with Soft Time Windows

    Full text link
    The article describes an investigation of the effectiveness of genetic algorithms for multi-objective combinatorial optimization (MOCO) by presenting an application for the vehicle routing problem with soft time windows. The work is motivated by the question, if and how the problem structure influences the effectiveness of different configurations of the genetic algorithm. Computational results are presented for different classes of vehicle routing problems, varying in their coverage with time windows, time window size, distribution and number of customers. The results are compared with a simple, but effective local search approach for multi-objective combinatorial optimization problems

    On green routing and scheduling problem

    Full text link
    The vehicle routing and scheduling problem has been studied with much interest within the last four decades. In this paper, some of the existing literature dealing with routing and scheduling problems with environmental issues is reviewed, and a description is provided of the problems that have been investigated and how they are treated using combinatorial optimization tools

    Algorithms for the multi-objective vehicle routing problem with hard time windows and stochastic travel time and service time

    Get PDF
    This paper introduces a multi-objective vehicle routing problem with hard time windows and stochastic travel and service times. This problem has two practical objectives: minimizing the operational costs, and maximizing the service level. These objectives are usually conflicting. Thus, we follow a multi-objective approach, aiming to compute a set of Pareto-optimal alternatives with different trade-offs for a decision maker to choose from. We propose two algorithms (a Multi-Objective Memetic Algorithm and a Multi-Objective Iterated Local Search) and compare them to an evolutionary multi-objective optimizer from the literature. We also propose a modified statistical method for the service level calculation. Experiments based on an adapted version of the 56 Solomon instances demonstrate the effectiveness of the proposed algorithms

    The Dynamic Multi-objective Multi-vehicle Covering Tour Problem

    Get PDF
    This work introduces a new routing problem called the Dynamic Multi-Objective Multi-vehicle Covering Tour Problem (DMOMCTP). The DMOMCTPs is a combinatorial optimization problem that represents the problem of routing multiple vehicles to survey an area in which unpredictable target nodes may appear during execution. The formulation includes multiple objectives that include minimizing the cost of the combined tour cost, minimizing the longest tour cost, minimizing the distance to nodes to be covered and maximizing the distance to hazardous nodes. This study adapts several existing algorithms to the problem with several operator and solution encoding variations. The efficacy of this set of solvers is measured against six problem instances created from existing Traveling Salesman Problem instances which represent several real countries. The results indicate that repair operators, variable length solution encodings and variable-length operators obtain a better approximation of the true Pareto front

    Solving Combinatorial Optimization Problems Using Genetic Algorithms and Ant Colony Optimization

    Get PDF
    This dissertation presents metaheuristic approaches in the areas of genetic algorithms and ant colony optimization to combinatorial optimization problems. Ant colony optimization for the split delivery vehicle routing problem An Ant Colony Optimization (ACO) based approach is presented to solve the Split Delivery Vehicle Routing Problem (SDVRP). SDVRP is a relaxation of the Capacitated Vehicle Routing Problem (CVRP) wherein a customer can be visited by more than one vehicle. The proposed ACO based algorithm is tested on benchmark problems previously published in the literature. The results indicate that the ACO based approach is competitive in both solution quality and solution time. In some instances, the ACO method achieves the best known results to date for the benchmark problems. Hybrid genetic algorithm for the split delivery vehicle routing problem (SDVRP) The Vehicle Routing Problem (VRP) is a combinatory optimization problem in the field of transportation and logistics. There are various variants of VRP which have been developed of the years; one of which is the Split Delivery Vehicle Routing Problem (SDVRP). The SDVRP allows customers to be assigned to multiple routes. A hybrid genetic algorithm comprising a combination of ant colony optimization, genetic algorithm, and heuristics is proposed and tested on benchmark SDVRP test problems. Genetic algorithm approach to solve the hospital physician scheduling problem Emergency departments have repeating 24-hour cycles of non-stationary Poisson arrivals and high levels of service time variation. The problem is to find a shift schedule that considers queuing effects and minimizes average patient waiting time and maximizes physicians’ shift preference subject to constraints on shift start times, shift durations and total physician hours available per day. An approach that utilizes a genetic algorithm and discrete event simulation to solve the physician scheduling problem in a hospital is proposed. The approach is tested on real world datasets for physician schedules

    Solving the waste collection problem from a multiobjective perspective: New methodologies and case studies

    Get PDF
    Fecha de lectura Tesis Doctoral: 19 de marzo de 2018.Economía Aplicada ( Matemáticas) Resumen tesis: El tratamiento de residuos es un tema de estudio por parte de las administraciones locales a nivel mundial. Distintos factores han de tenerse en cuenta para realizar un servicio eficiente. En este trabajo se desarrolla una herramienta para analizar y resolver el problema de la recogida de residuos sólidos en Málaga. Tras un análisis exhaustivo de los datos, se aborda el problema real como un problema de rutas multiobjetivo con capacidad limitada. Para los problemas multiobjetivo, no suele existir una única solución óptima, sino un conjunto de soluciones eficientes de Pareto. Las características del problema hacen inviable su resolución de forma exacta, por lo que se aplican distintas estrategias metaheurísticas para obtener una buena aproximación. En particular, se combinan las técnicas de GRASP, Path Relinking y Variable Neighborhood Search, que son adaptadas a la perspectiva multicriterio. Se trata de una aproximación en dos fases: una primera aproximación de la frontera eficiente se genera mediante un GRASP multiobjetivo. Tres son los métodos propuestos para la primera aproximación, dos de ellos derivados de la publicación de Martí et al. (2015) y el último se apoya en la función escalarizada de logro de Wierzbicki (Wierzbicki, 1980) para distintas combinaciones de pesos. A continuación, esta aproximación es mejorada con una versión de Path Relinking o Variable Neighborhood Search, con un punto de referencia diseñado para problemas multiobjetivo. Una vez generada la aproximación de la frontera eficiente, el proceso de obtención de la solución que más se adecúa a las preferencias de los gestores se basa en el desarrollo de un método interactivo sin trade – off, derivado de la filosofía NAUTILUS (Miettinen et al. 2010). Para evitar gastos de cómputo extensos, esta metodología se apoya en una pre - computación de los elementos de la frontera eficiente

    Multi-objective Analysis of Approaches to Dynamic Routing of a Vehicle

    Get PDF
    We consider a routing problem for a single vehicle serving customer Locations in the course of time. A subset of these customers must necessarily be served, while the complement of this subset contains dynamic customers which request for service over time, and which do not necessarily need to be served. The decision maker’s conflicting goals are serving as many customers as possible as well as minimizing total travel distance. We solve this bi-objective Problem with an evolutionary multi-objective algorithm in order to provide an a-posteriori evaluation tool for enabling decision makers to assess the single objective solution strategies that they actually use in real-time. We present the modifications to be applied to the evolutionary multi-objective algorithm NSGA2 in order to solve the routing problem, we describe a number of real-time single-objective solution strategies, and we finally use the gained efficient trade-off solutions of NSGA2 to exemplarily evaluate the real-time strategies. Our results show that the evolutionary multi-objective approach is well-suited to generate benchmarks for assessing dynamic heuristic strategies. Our findings point into future directions for designing dynamic multi-objective approaches for the vehicle routing problem with time windows

    A Decision Support Tool for Urban Freight Transport Planning Based on a Multi-Objective Evolutionary Algorithm

    Get PDF
    We present an optimization procedure based on a hybrid version of an evolutionary multiobjective decision-making algorithm for its application in urban freight transportation planning problems. This tool is intended to solve the planning problems of a merchandise distribution firm that dispatches small volume fractional loads of fresh foods on daily schedules. The firm owns a network of distribution centers supplying a large number of small businesses in Buenos Aires and its surroundings. The recombination operator of the evolutionary algorithm used here has been designed specifically for this problem. It is intended to embody a strategy that takes into account constraints like temporary closeness, closeness time window and connectivity in order to improve its performance in the clustering phase. The representation allows incorporating specific information about the actual instances of the problem and uses adaptive control of the parameters in the calibration stage. The performance of the proposed optimizer was tested against the results obtained by two evolutionary algorithms, NSGA II and SPEA 2, widely used in similar problems. We use hypervolume as a measure of convergence and dispersion of Pareto fronts. The statistical analysis of the results obtained with the three algorithms uses the Wilcoxon rank sum test, which yields evidence that our procedure provides good results.Fil: Miguel, Fabio Maximilian. Universidad Nacional de Rio Negro. Sede Alto Valle. Sub Sede Villa Regina; ArgentinaFil: Frutos, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; ArgentinaFil: Tohmé, Fernando Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: Méndez Babey, Máximo. Universidad de Las Palmas de Gran Canaria. Instituto Universitario de Sistemas Inteligentes Siani; Argentin

    The Bi-objective Periodic Closed Loop Network Design Problem

    Get PDF
    © 2019 Elsevier Ltd. This manuscript is made available under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence (CC BY-NC-ND 4.0). For further details please see: https://creativecommons.org/licenses/by-nc-nd/4.0/Reverse supply chains are becoming a crucial part of retail supply chains given the recent reforms in the consumers’ rights and the regulations by governments. This has motivated companies around the world to adopt zero-landfill goals and move towards circular economy to retain the product’s value during its whole life cycle. However, designing an efficient closed loop supply chain is a challenging undertaking as it presents a set of unique challenges, mainly owing to the need to handle pickups and deliveries at the same time and the necessity to meet the customer requirements within a certain time limit. In this paper, we model this problem as a bi-objective periodic location routing problem with simultaneous pickup and delivery as well as time windows and examine the performance of two procedures, namely NSGA-II and NRGA, to solve it. The goal is to find the best locations for a set of depots, allocation of customers to these depots, allocation of customers to service days and the optimal routes to be taken by a set of homogeneous vehicles to minimise the total cost and to minimise the overall violation from the customers’ defined time limits. Our results show that while there is not a significant difference between the two algorithms in terms of diversity and number of solutions generated, NSGA-II outperforms NRGA when it comes to spacing and runtime.Peer reviewedFinal Accepted Versio

    Green Vehicle Routing Optimization Based on Carbon Emission and Multiobjective Hybrid Quantum Immune Algorithm

    Get PDF
    © 2018 Xiao-Hong Liu et al. Green Vehicle Routing Optimization Problem (GVROP) is currently a scientific research problem that takes into account the environmental impact and resource efficiency. Therefore, the optimal allocation of resources and the carbon emission in GVROP are becoming more and more important. In order to improve the delivery efficiency and reduce the cost of distribution requirements through intelligent optimization method, a novel multiobjective hybrid quantum immune algorithm based on cloud model (C-HQIA) is put forward. Simultaneously, the computational results have proved that the C-HQIA is an efficient algorithm for the GVROP. We also found that the parameter optimization of the C-HQIA is related to the types of artificial intelligence algorithms. Consequently, the GVROP and the C-HQIA have important theoretical and practical significance
    • …
    corecore