641 research outputs found

    Conformational selection or induced fit? 50 years of debate resolved

    Get PDF
    Exactly 50 years ago, biochemists raised the question of the mechanism of the conformational change that mediates “allosteric” interactions between regulatory sites and biologically active sites in regulatory/receptor proteins. Do the different conformations involved already exist spontaneously in the absence of the regulatory ligands (Monod-Wyman-Changeux), such that the complementary protein conformation would be selected to mediate signal transduction, or do particular ligands induce the receptor to adopt the conformation best suited to them (Koshland-Nemethy-Filmer—induced fit)? This is not just a central question for biophysics, it also has enormous importance for drug design. Recent advances in techniques have allowed detailed experimental and theoretical comparisons with the formal models of both scenarios. Also, it has been shown that mutated receptors can adopt constitutively active confirmations in the absence of ligand. There have also been demonstrations that the atomic resolution structures of the same protein are essentially the same whether ligand is bound or not. These and other advances in past decades have produced a situation where the vast majority of the data using different categories of regulatory proteins (including regulatory enzymes, ligand-gated ion channels, G protein-coupled receptors, and nuclear receptors) support the conformational selection scheme of signal transduction

    Cyclic nucleotide-gated channels: structural basis of ligand efficacy and allosteric modulation

    Get PDF
    Most working proteins, including metabolic enzymes, transcription regulators, and membrane receptors, transporters, and ion channels, share the property of allosteric coupling. The term 'allosteric' means that these proteins mediate indirect interactions between sites that are physically separated on the protein. In the example of ligand-gated ion channels, the binding of a suitable ligand elicits local conformational changes at the binding site, which are coupled to further conformational changes in regions distant from the binding site. The physical motions finally arrive at the site of biological activity: the ion-permeating pore. The conformational changes that lead from the ligand binding to the actual opening of the pore comprise 'gating'. In 1956, del Castillo and Katz suggested that the competition between different ligands at nicotinic acetylcholine receptors (nAChRs) could be explained by formation of an intermediate, ligand-bound, yet inactive state of the receptor, which separates the active state of the receptor from the initial binding of the ligand (del Castillo & Katz, 1957). This 'binding-then-gating', two-step model went beyond the then-prevailing drug-receptor model that assumes a single bimolecular binding reaction, and paralleled Stephenson's conceptual dichotomy of 'affinity' and 'efficacy' (Stephenson, 1956). In 1965 Monod, Wyman and Changeux presented a simple allosteric model (the MWC model) (Monod et al. 1965) that explained the cooperative binding of oxygen to haemoglobin; it was adopted as an important paradigm for ligand-gated channels soon after its initial formulation (Changeux et al. 1967; Karlin, 1967; Colquhoun, 1973)

    Ligand-dependent opening of the multiple AMPA receptor conductance states: a concerted model

    Full text link
    Modulation of the properties of AMPA receptors at the post-synaptic membrane is one of the main suggested mechanisms behind synaptic plasticity in the central nervous system of vertebrates. Electrophysiological recordings of single channels stimulated with agonists showed that both recombinant and native AMPA receptors visit multiple conductance states in an agonist concentration dependent manner. We propose an allosteric model of the multiple conductance states based on concerted conformational transitions of the four subunits, as an iris diaphragm. Our model predicts that the thermodynamic behaviour of the conductance states upon full and partial agonist stimulations can be described with increased affinity of receptors as they progress to higher conductance states. The model also predicts existence of AMPA receptors in non-liganded conductive substates. However, spontaneous openings probability decreases with increasing conductances. Finally, we predict that the large conductance states are stabilized within the rise phase of a whole-cell EPSC in glutamatergic hippocampal neurons. Our model provides a mechanistic link between ligand concentration and conductance states that can explain thermodynamic and kinetic features of AMPA receptor gating.Comment: 4 figures, models available on demand. They will be published by BioModels Database upon publication of the articl

    Mechanisms of modulation of nicotinic acetylcholine receptors

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2016Inappropriate expression of nicotinic acetylcholine receptors in the central nervous system is associated with nicotine addiction, Alzheimer's disease, Parkinson's disease and other disorders. Modulators (drugs) have the potential to restore circuit properties that arise from inappropriate expression of nicotinic receptor's. Compounds that interact with allosteric sites have a distinct advantage over agonists and partial agonists, in that, they retain normal activation patterns by allowing binding of the endogenous ligand. Positive allosteric modulators boost the receptors ability to respond to agonist. Studies of these modulators constitute a first step toward the identification and development of better compounds that minimize signaling errors at cholinergic synapses. We have used single molecule methods to investigate the action of a novel positive allosteric modulator, desformylflustrabromine (dFBr), on nicotinic receptors. Our studies were focused on the α4β2 subtype of nicotinic receptors in the brain. These receptors exist in two forms with low sensitivity (α4₃β2₂) or, alternatively, high sensitivity (α4₂β2₃) to agonist. Our experiments allowed us to develop detailed gating models for high and low sensitivity receptors, as well as gain new insights regarding the mechanisms that underlie potentiation by allosteric modulators. We found that dFBr potentiates low sensitivity receptors by destabilizing desensitized states of the receptor. In contrast, potentiation of high sensitivity receptors arises from a synchronization of openings following an application of agonist due to an increase in the opening rate. Based on our results we now have a better understanding of the advantages of dFBr on high and low sensitivity receptors

    Monod-Wyman-Changeux Analysis of Ligand-Gated Ion Channel Mutants

    Get PDF
    We present a framework for computing the gating properties of ligand-gated ion channel mutants using the Monod-Wyman-Changeux (MWC) model of allostery. We derive simple analytic formulas for key functional properties such as the leakiness, dynamic range, half-maximal effective concentration, and effective Hill coefficient, and explore the full spectrum of phenotypes that are accessible through mutations. Specifically, we consider mutations in the channel pore of nicotinic acetylcholine receptor (nAChR) and the ligand binding domain of a cyclic nucleotide-gated (CNG) ion channel, demonstrating how each mutation can be characterized as only affecting a subset of the biophysical parameters. In addition, we show how the unifying perspective offered by the MWC model allows us, perhaps surprisingly, to collapse the plethora of dose-response data from different classes of ion channels into a universal family of curves

    Signal Transduction Pathways in the Pentameric Ligand-Gated Ion Channels

    Get PDF
    The mechanisms of allosteric action within pentameric ligand-gated ion channels (pLGICs) remain to be determined. Using crystallography, site-directed mutagenesis, and two-electrode voltage clamp measurements, we identified two functionally relevant sites in the extracellular (EC) domain of the bacterial pLGIC from Gloeobacter violaceus (GLIC). One site is at the C-loop region, where the NQN mutation (D91N, E177Q, and D178N) eliminated inter-subunit salt bridges in the open-channel GLIC structure and thereby shifted the channel activation to a higher agonist concentration. The other site is below the C-loop, where binding of the anesthetic ketamine inhibited GLIC currents in a concentration dependent manner. To understand how a perturbation signal in the EC domain, either resulting from the NQN mutation or ketamine binding, is transduced to the channel gate, we have used the Perturbation-based Markovian Transmission (PMT) model to determine dynamic responses of the GLIC channel and signaling pathways upon initial perturbations in the EC domain of GLIC. Despite the existence of many possible routes for the initial perturbation signal to reach the channel gate, the PMT model in combination with Yen's algorithm revealed that perturbation signals with the highest probability flow travel either via the β1-β2 loop or through pre-TM1. The β1-β2 loop occurs in either intra- or inter-subunit pathways, while pre-TM1 occurs exclusively in inter-subunit pathways. Residues involved in both types of pathways are well supported by previous experimental data on nAChR. The direct coupling between pre-TM1 and TM2 of the adjacent subunit adds new insight into the allosteric signaling mechanism in pLGICs. Š 2013 Mowrey et al

    The functional architecture of the acetylcholine nicotinic receptor explored by affinity labelling and site-directed mutagenesis

    Get PDF
    The scientific community will remember Peter Läuger as an exceptional man combining a generous personality and a sharp and skilful mind. He was able to attract by his views the interest of a large spectrum of biologists concerned by the mechanism of ion translocation through membranes. Yet, he was not a man with a single technique or theory. Using an authentically multidisciplinary approach, his ambition was to ‘understand transmembrane transport at the microscopic level, to capture its dynamics in the course of defined physiological processes' (1987). According to him, ‘new concepts in the molecular physics of proteins' had to be imagined, and ‘the traditional static picture of proteins has been replaced by the notions that proteins represent dynamic structures, subjected to conformational fluctuations covering a very wide time-range' (1987

    Kinetic properties and open probability of alpha7 nicotinic acetylcholine receptors.

    Get PDF
    The alpha7 nicotinic acetylcholine receptor (nAChR) has some peculiar kinetic properties. From the literature of alpha7 nAChR-mediated currents we concluded that experimentally measured kinetic properties reflected properties of the solution exchange system, rather than genuine kinetic properties of the receptors. We also concluded that all experimentally measured EC50 values for agonists must inherently be inaccurate. The aim of this study was to assess the undistorted kinetic properties of alpha7 nAChRs, and to construct an improved kinetic model, which can also serve as a basis of modeling the effect of the positive allosteric modulator PNU-120596, as it is described in the accompanying paper. Agonist-evoked currents were recorded from GH4C1 cells stably transfected with pCEP4/rat alpha7 nAChR using patch-clamp and fast solution exchange. We used two approaches to circumvent the problem of insufficient solution exchange rate: extrapolation and kinetic modeling. First, using different solution exchange rates we recorded evoked currents, and extrapolated their amplitude and kinetics to instantaneous solution exchange. Second, we constructed a kinetic model that reproduced concentration-dependence and solution exchange rate-dependence of receptors, and then we simulated receptor behavior at experimentally unattainably fast solution exchange. We also determined open probabilities during choline-evoked unmodulated and modulated currents using nonstationary fluctuation analysis. The peak open probability of 10 mM choline-evoked currents was 0.033 +/- 0.006, while in the presence of choline (10 mM) and PNU-120596 (10 muM), it was increased to 0.599 +/- 0.058. Our kinetic model could adequately reproduce low open probability, fast kinetics, fast recovery and solution exchange rate-dependent kinetics

    Conformational changes in Îą7 acetylcholine receptors underlying allosteric modulation by divalent cations

    Get PDF
    Allosteric modulation of membrane receptors is a widespread mechanism by which endogenous and exogenous agents regulate receptor function. For example, several members of the nicotinic receptor family are modulated by physiological concentrations of extracellular calcium ions. In this paper, we examined conformational changes underlying this modulation and compare these with changes evoked by ACh. Two sets of residues in the Îą7 acetylcholine receptor extracellular domain were mutated to cysteine and analyzed by measuring the rates of modification by the thiol-specific reagent 2-aminoethylmethane thiosulfonate. Using Ba2+ as a surrogate for Ca2+, we found a divalent-dependent decrease the modification rates of cysteine substitutions at M37 and M40, residues at which rates were also slowed by ACh. In contrast, Ba2+ had no significant effect at N52C, a residue where ACh increased the rate of modification. Thus divalent modulators cause some but not all of the conformational effects elicited by agonist. Cysteine substitution of either of two glutamates (E44 or E172), thought to participate in the divalent cation binding site, caused a loss of allosteric modulation, yet Ba2+ still had a significant effect on modification rates of these residues. In addition, the effect of Ba2+ at these residues did not appear to be due to direct occlusion. Our data demonstrate that modulation by divalent cations involves substantial conformational changes in the receptor extracellular domain. Our evidence also suggests the modulation occurs via a binding site distinct from one which includes either (or both) of the conserved glutamates at E44 or E172
    • …
    corecore