685 research outputs found

    Communicating Java Threads

    Get PDF
    The incorporation of multithreading in Java may be considered a significant part of the Java language, because it provides udimentary facilities for concurrent programming. However, we belief that the use of channels is a fundamental concept for concurrent programming. The channel approach as described in this paper is a realization of a systematic design method for concurrent programming in Java based on the CSP paradigm. CSP requires the availability of a Channel class and the addition of composition constructs for sequential, parallel and alternative processes. The Channel class and the constructs have been implemented in Java in compliance with the definitions in CSP. As a result, implementing communication between processes is facilitated, enabling the programmer to avoid deadlock more easily, and freeing the programmer from synchronization and scheduling constructs. The use of the Channel class and the additional constructs is illustrated in a simple application

    Bridging formal models : an engineering perspective

    Get PDF
    The thesis presents different techniques that can be used to build formal behavioral models. If modal properties are formulated, the models can be subjected to verification techniques to determine whether a model possesses the desired properties. However many native environments do not facilitate tools or techniques to verify them. Hence, these models need to be transformed into other models that provide suitable techniques for a formal analysis. The transformations are classified into two engineering approaches, namely syntactically engineered models and semantically engineered models. Syntactically engineered models are constructed from input specifications without explicitly considering the semantics. Semantically engineered models are constructed from input specifications by explicitly considering the semantics. The syntactic engineering approach presents four dedicated modeling techniques that construct or disseminate verification results for formal models. The first modeling technique describes a way to create models from system descriptions that specify concurrent behavior. Here, we model three variations of a 2×2 switch, for which the models are subsequently compared to models created in the specification languages: TLA+, Bluespec, Statecharts, and ACP. The comparison validates that mCRL2 is a suitable specification language to model descriptions or specify the behavior for prototype systems. The second syntactic technique constructs an mCRL2 model from a software implementation that operates a printer for printing Printed Circuit Boards. The model is used to advise (other) software engineers on dangerous language constructs in the control software. Hence, the model is model checked for various safety properties. The implementation is modeled through an over-approximation on the behavior by abstracting from program variables, such that only interface calls between processes and non-deterministic choices in procedures remain. The third modeling technique describes a language transformation from the language Chi 2.0 language to the mCRL2 language. The purpose of the transformation is to facilitate model checking techniques to the discrete part of the Chi 2.0 language

    Developing adaptive multi-device applications with the Heterogeneous Programming Library

    Get PDF
    [Abstract] The usage of heterogeneous devices presents two main problems. One is their complex programming, a problem that grows when multiple devices are used. The second issue is that even if the codes for these devices can be portable on top of OpenCL, they lack performance portability, effectively requiring specialized implementations for each device to get good performance. In this paper we extend the Heterogeneous Programming Library (HPL), which improves the usability of heterogeneous systems on top of OpenCL, to better handle both issues. First, we provide HPL with mechanisms to support the implementation of any multi-device application that requires arbitrary patterns of communication between several devices and a host memory. In a second stage HPL is improved with an adaptive scheme to optimize communications between devices depending on the execution environment. An evaluation using benchmarks with very different nature shows that HPL reduces the SLOCs and programming effort of OpenCL applications by 27 and 43 %, respectively, while improving the performance of applications that exchange data between devices by 28 % on average.Xunta de Galicia; GRC2013/055Ministerio de Economía y Competitividad; TIN2013-42148-PConsejo de Investigación Científica y Tecnológica de Turquía (TUBITAK); 112E191European Cooperation in Science and Technology (COST); IC130
    • …
    corecore