7,045 research outputs found

    Earthquake Arrival Association with Backprojection and Graph Theory

    Full text link
    The association of seismic wave arrivals with causative earthquakes becomes progressively more challenging as arrival detection methods become more sensitive, and particularly when earthquake rates are high. For instance, seismic waves arriving across a monitoring network from several sources may overlap in time, false arrivals may be detected, and some arrivals may be of unknown phase (e.g., P- or S-waves). We propose an automated method to associate arrivals with earthquake sources and obtain source locations applicable to such situations. To do so we use a pattern detection metric based on the principle of backprojection to reveal candidate sources, followed by graph-theory-based clustering and an integer linear optimization routine to associate arrivals with the minimum number of sources necessary to explain the data. This method solves for all sources and phase assignments simultaneously, rather than in a sequential greedy procedure as is common in other association routines. We demonstrate our method on both synthetic and real data from the Integrated Plate Boundary Observatory Chile (IPOC) seismic network of northern Chile. For the synthetic tests we report results for cases with varying complexity, including rates of 500 earthquakes/day and 500 false arrivals/station/day, for which we measure true positive detection accuracy of > 95%. For the real data we develop a new catalog between January 1, 2010 - December 31, 2017 containing 817,548 earthquakes, with detection rates on average 279 earthquakes/day, and a magnitude-of-completion of ~M1.8. A subset of detections are identified as sources related to quarry and industrial site activity, and we also detect thousands of foreshocks and aftershocks of the April 1, 2014 Mw 8.2 Iquique earthquake. During the highest rates of aftershock activity, > 600 earthquakes/day are detected in the vicinity of the Iquique earthquake rupture zone

    Efficiency characterization of a large neuronal network: a causal information approach

    Full text link
    When inhibitory neurons constitute about 40% of neurons they could have an important antinociceptive role, as they would easily regulate the level of activity of other neurons. We consider a simple network of cortical spiking neurons with axonal conduction delays and spike timing dependent plasticity, representative of a cortical column or hypercolumn with large proportion of inhibitory neurons. Each neuron fires following a Hodgkin-Huxley like dynamics and it is interconnected randomly to other neurons. The network dynamics is investigated estimating Bandt and Pompe probability distribution function associated to the interspike intervals and taking different degrees of inter-connectivity across neurons. More specifically we take into account the fine temporal ``structures'' of the complex neuronal signals not just by using the probability distributions associated to the inter spike intervals, but instead considering much more subtle measures accounting for their causal information: the Shannon permutation entropy, Fisher permutation information and permutation statistical complexity. This allows us to investigate how the information of the system might saturate to a finite value as the degree of inter-connectivity across neurons grows, inferring the emergent dynamical properties of the system.Comment: 26 pages, 3 Figures; Physica A, in pres

    Short-Term Forecasting of Wind Speed and Wind Power Based on BP and Adaboost_BP

    Get PDF
    Due to wind is intermittent and less dispatchable, wind power fluctuates as the wind fluctuating and is uncontrollable. Therefore, when wind power accounts for a higher proportion of total electricity generation of the system, power generation plan needs to arrange according to the variation of wind power output. The way to solve the problem is forecasting the wind power. In this paper, we focus on the wind speed and wind power forecasting in the time scales of 10min, 1h and 3h in the future. BP Neural Network and Adaboost_BP Neural Network are selected as the forecasting model for wind speed forecasting. And for wind power forecasting model, we use BP Neural Network as the method. The wind farm which the data used in this paper comes from has 31 wind turbines in the same type. As the geographical distribution of this wind farm is unknown, we pick one No.17 wind turbine as the optimal one by analyzing the data of 31 wind turbines and making the curve fitting of wind speed and wind power. Then we analyze the influencing factor of wind power, and find out wind speed as the most influential factor. For the wind speed, we deal with the raw data which selected from SCADA (Supervisory Control and Data Acquisition) system before using it. For the wind speed forecasting model, we find the optimal number of the training data for each training sets for the BP Neural Network in each time scale. Then we make a contrast of the accuracy of the single-step forecasting accuracy between BP Neural Network model and Adaboost_BP model in 10min, 1h and 3h at their respectively optimal number of the training data. And there is a comparison between the accuracy of the single-step and iterative multi-step wind speed forecasting model in 1h and 3h time scales at the number of the training data of 10 for the two models. For the wind power forecasting model, we use the forecasting wind speed and its corresponding wind power to build the input matrix for the network training. And we find that not only the number of the training data for each training sets but also the range of wind power affects the forecasting accuracy. Then make a contrast of the the wind power forecasting result with forecasting wind speed and actual wind speed as the input

    Icing thickness prediction model for overhead transmission lines

    Get PDF
    Failures in a large electric power system are often inevitable. Severe weather conditions are one of the main causes of transmission line failures. Using the fault data of transmission lines of Shaanxi Power Grid from 2006 to 2016, in conjunction with meteorological information, this paper analyses the relationship between the temporal-spatial distribution characteristics of meteorological disasters and the fault of transmission lines in Shaanxi Province, China. In order to analyze the influence of micro-meteorology on ice coating, a grey correlation analysis method is proposed. This thesis calculates the grey relational between ice thickness and micro-meteorological parameters such as ambient temperature, relative humidity, wind speed and precipitation. The results show that the correlation between ambient temperature, wind speed and ice thickness is bigger than others. Based on the results of grey correlation analysis, a Multivariate Grey Model (MGM) and a Back Propagation (BP) neural network prediction model are built based on ice thickness, ambient temperature and wind speed. The prediction results of these two models are verified by the case of ice-coating of Shaanxi power grid. The results show that the prediction errors of the two models are small and satisfy the engineering requirement. Then a realistic case is carried out by using these two models. An icing risk map is drawn according to the results

    Investigation on soft computing techniques for airport environment evaluation systems

    Get PDF
    Spatial and temporal information exist widely in engineering fields, especially in airport environmental management systems. Airport environment is influenced by many different factors and uncertainty is a significant part of the system. Decision support considering this kind of spatial and temporal information and uncertainty is crucial for airport environment related engineering planning and operation. Geographical information systems and computer aided design are two powerful tools in supporting spatial and temporal information systems. However, the present geographical information systems and computer aided design software are still too general in considering the special features in airport environment, especially for uncertainty. In this thesis, a series of parameters and methods for neural network-based knowledge discovery and training improvement are put forward, such as the relative strength of effect, dynamic state space search strategy and compound architecture. [Continues.

    Embedded Applications of MS-PSO-BP on Wind/Storage Power Forecasting

    Get PDF
    Higher proportion wind power penetration has great impact on grid operation and dispatching, intelligent hybrid algorithm is proposed to cope with inaccurate schedule forecast. Firstly, hybrid algorithm of MS-PSO-BP (Mathematical Statistics, Particle Swarm Optimization, Back Propagation neural network) is proposed to improve the wind power system prediction accuracy. MS is used to optimize artificial neural network training sample, PSO-BP (particle swarm combined with back propagation neural network) is employed on prediction error dynamic revision. From the angle of root mean square error (RMSE), the mean absolute error (MAE) and convergence rate, analysis and comparison of several intelligent algorithms (BP, RBP, PSO-BP, MS-BP, MS-RBP, MS-PSO-BP) are done to verify the availability of the proposed prediction method. Further, due to the physical function of energy storage in improving accuracy of schedule pre-fabrication, a mathematical statistical method is proposed to determine the optimal capacity of the storage batteries in power forecasting based on the historical statistical data of wind farm. Algorithm feasibility is validated by application of experiment simulation and comparative analysis

    Wind Power Forecasting Methods Based on Deep Learning: A Survey

    Get PDF
    Accurate wind power forecasting in wind farm can effectively reduce the enormous impact on grid operation safety when high permeability intermittent power supply is connected to the power grid. Aiming to provide reference strategies for relevant researchers as well as practical applications, this paper attempts to provide the literature investigation and methods analysis of deep learning, enforcement learning and transfer learning in wind speed and wind power forecasting modeling. Usually, wind speed and wind power forecasting around a wind farm requires the calculation of the next moment of the definite state, which is usually achieved based on the state of the atmosphere that encompasses nearby atmospheric pressure, temperature, roughness, and obstacles. As an effective method of high-dimensional feature extraction, deep neural network can theoretically deal with arbitrary nonlinear transformation through proper structural design, such as adding noise to outputs, evolutionary learning used to optimize hidden layer weights, optimize the objective function so as to save information that can improve the output accuracy while filter out the irrelevant or less affected information for forecasting. The establishment of high-precision wind speed and wind power forecasting models is always a challenge due to the randomness, instantaneity and seasonal characteristics
    corecore