1,997 research outputs found

    Polar Fusion Technique Analysis for Evaluating the Performances of Image Fusion of Thermal and Visual Images for Human Face Recognition

    Full text link
    This paper presents a comparative study of two different methods, which are based on fusion and polar transformation of visual and thermal images. Here, investigation is done to handle the challenges of face recognition, which include pose variations, changes in facial expression, partial occlusions, variations in illumination, rotation through different angles, change in scale etc. To overcome these obstacles we have implemented and thoroughly examined two different fusion techniques through rigorous experimentation. In the first method log-polar transformation is applied to the fused images obtained after fusion of visual and thermal images whereas in second method fusion is applied on log-polar transformed individual visual and thermal images. After this step, which is thus obtained in one form or another, Principal Component Analysis (PCA) is applied to reduce dimension of the fused images. Log-polar transformed images are capable of handling complicacies introduced by scaling and rotation. The main objective of employing fusion is to produce a fused image that provides more detailed and reliable information, which is capable to overcome the drawbacks present in the individual visual and thermal face images. Finally, those reduced fused images are classified using a multilayer perceptron neural network. The database used for the experiments conducted here is Object Tracking and Classification Beyond Visible Spectrum (OTCBVS) database benchmark thermal and visual face images. The second method has shown better performance, which is 95.71% (maximum) and on an average 93.81% as correct recognition rate.Comment: Proceedings of IEEE Workshop on Computational Intelligence in Biometrics and Identity Management (IEEE CIBIM 2011), Paris, France, April 11 - 15, 201

    An Improved ResNet-50 for Garbage Image Classification

    Get PDF
    In order to solve the classification model\u27s shortcomings, this study suggests a new trash classification model that is generated by altering the structure of the ResNet-50 network. The improvement is divided into two sections. The first section is to change the residual block. To filter the input features, the attention module is inserted into the residual block. Simultaneously, the downsampling process in the residual block is changed to decrease information loss. The second section is multi-scale feature fusion. To optimize feature usage, horizontal and vertical multi-scale feature fusion is integrated to the primary network structure. Because of the filtering and reuse of image features, the enhanced model can achieve higher classification performance than existing models for small data sets with few samples. The experimental results show that the modified model outperforms the original ResNet-50 model on the TrashNet dataset by 7.62% and is more robust. In the meanwhile, our model is more accurate than other advanced methods
    • ā€¦
    corecore