3,213 research outputs found

    From Questions to Effective Answers: On the Utility of Knowledge-Driven Querying Systems for Life Sciences Data

    Get PDF
    We compare two distinct approaches for querying data in the context of the life sciences. The first approach utilizes conventional databases to store the data and intuitive form-based interfaces to facilitate easy querying of the data. These interfaces could be seen as implementing a set of "pre-canned" queries commonly used by the life science researchers that we study. The second approach is based on semantic Web technologies and is knowledge (model) driven. It utilizes a large OWL ontology and same datasets as before but associated as RDF instances of the ontology concepts. An intuitive interface is provided that allows the formulation of RDF triples-based queries. Both these approaches are being used in parallel by a team of cell biologists in their daily research activities, with the objective of gradually replacing the conventional approach with the knowledge-driven one. This provides us with a valuable opportunity to compare and qualitatively evaluate the two approaches. We describe several benefits of the knowledge-driven approach in comparison to the traditional way of accessing data, and highlight a few limitations as well. We believe that our analysis not only explicitly highlights the specific benefits and limitations of semantic Web technologies in our context but also contributes toward effective ways of translating a question in a researcher's mind into precise computational queries with the intent of obtaining effective answers from the data. While researchers often assume the benefits of semantic Web technologies, we explicitly illustrate these in practice

    Semantic Web for data harmonization in Chinese medicine

    Get PDF
    Scientific studies to investigate Chinese medicine with Western medicine have been generating a large amount of data to be shared preferably under a global data standard. This article provides an overview of Semantic Web and identifies some representative Semantic Web applications in Chinese medicine. Semantic Web is proposed as a standard for representing Chinese medicine data and facilitating their integration with Western medicine data

    Biomedical data integration in computational drug design and bioinformatics

    Get PDF
    [Abstract In recent years, in the post genomic era, more and more data is being generated by biological high throughput technologies, such as proteomics and transcriptomics. This omics data can be very useful, but the real challenge is to analyze all this data, as a whole, after integrating it. Biomedical data integration enables making queries to different, heterogeneous and distributed biomedical data sources. Data integration solutions can be very useful not only in the context of drug design, but also in biomedical information retrieval, clinical diagnosis, system biology, etc. In this review, we analyze the most common approaches to biomedical data integration, such as federated databases, data warehousing, multi-agent systems and semantic technology, as well as the solutions developed using these approaches in the past few years.Red Gallega de Investigación sobre Cáncer Colorrectal; Ref. 2009/58Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo; 209RT- 0366Instituto de Salud Carlos III; PIO52048Instituto de Salud Carlos III; RD07/0067/0005Ministerio de Industria, Turismo y Comercio; TSI-020110-2009-

    Linked Registries: Connecting Rare Diseases Patient Registries through a Semantic Web Layer

    Get PDF
    Patient registries are an essential tool to increase current knowledge regarding rare diseases. Understanding these data is a vital step to improve patient treatments and to create the most adequate tools for personalized medicine. However, the growing number of disease-specific patient registries brings also new technical challenges. Usually, these systems are developed as closed data silos, with independent formats and models, lacking comprehensive mechanisms to enable data sharing. To tackle these challenges, we developed a Semantic Web based solution that allows connecting distributed and heterogeneous registries, enabling the federation of knowledge between multiple independent environments. This semantic layer creates a holistic view over a set of anonymised registries, supporting semantic data representation, integrated access, and querying. The implemented system gave us the opportunity to answer challenging questions across disperse rare disease patient registries. The interconnection between those registries using Semantic Web technologies benefits our final solution in a way that we can query single or multiple instances according to our needs. The outcome is a unique semantic layer, connecting miscellaneous registries and delivering a lightweight holistic perspective over the wealth of knowledge stemming from linked rare disease patient registries

    A Semantic Problem Solving Environment for Integrative Parasite Research: Identification of Intervention Targets for Trypanosoma cruzi

    Get PDF
    Effective research in parasite biology requires analyzing experimental lab data in the context of constantly expanding public data resources. Integrating lab data with public resources is particularly difficult for biologists who may not possess significant computational skills to acquire and process heterogeneous data stored at different locations. Therefore, we develop a semantic problem solving environment (SPSE) that allows parasitologists to query their lab data integrated with public resources using ontologies. An ontology specifies a common vocabulary and formal relationships among the terms that describe an organism, and experimental data and processes in this case. SPSE supports capturing and querying provenance information, which is metadata on the experimental processes and data recorded for reproducibility, and includes a visual query-processing tool to formulate complex queries without learning the query language syntax. We demonstrate the significance of SPSE in identifying gene knockout targets for T. cruzi. The overall goal of SPSE is to help researchers discover new or existing knowledge that is implicitly present in the data but not always easily detected. Results demonstrate improved usefulness of SPSE over existing lab systems and approaches, and support for complex query design that is otherwise difficult to achieve without the knowledge of query language syntax

    Linked open drug data for pharmaceutical research and development

    Get PDF
    There is an abundance of information about drugs available on the Web. Data sources range from medicinal chemistry results, over the impact of drugs on gene expression, to the outcomes of drugs in clinical trials. These data are typically not connected together, which reduces the ease with which insights can be gained. Linking Open Drug Data (LODD) is a task force within the World Wide Web Consortium's (W3C) Health Care and Life Sciences Interest Group (HCLS IG). LODD has surveyed publicly available data about drugs, created Linked Data representations of the data sets, and identified interesting scientific and business questions that can be answered once the data sets are connected. The task force provides recommendations for the best practices of exposing data in a Linked Data representation. In this paper, we present past and ongoing work of LODD and discuss the growing importance of Linked Data as a foundation for pharmaceutical R&D data sharing
    • …
    corecore