634 research outputs found

    Two-Layered Superposition of Broadcast/Multicast and Unicast Signals in Multiuser OFDMA Systems

    Full text link
    We study optimal delivery strategies of one common and KK independent messages from a source to multiple users in wireless environments. In particular, two-layered superposition of broadcast/multicast and unicast signals is considered in a downlink multiuser OFDMA system. In the literature and industry, the two-layer superposition is often considered as a pragmatic approach to make a compromise between the simple but suboptimal orthogonal multiplexing (OM) and the optimal but complex fully-layered non-orthogonal multiplexing. In this work, we show that only two-layers are necessary to achieve the maximum sum-rate when the common message has higher priority than the KK individual unicast messages, and OM cannot be sum-rate optimal in general. We develop an algorithm that finds the optimal power allocation over the two-layers and across the OFDMA radio resources in static channels and a class of fading channels. Two main use-cases are considered: i) Multicast and unicast multiplexing when KK users with uplink capabilities request both common and independent messages, and ii) broadcast and unicast multiplexing when the common message targets receive-only devices and KK users with uplink capabilities additionally request independent messages. Finally, we develop a transceiver design for broadcast/multicast and unicast superposition transmission based on LTE-A-Pro physical layer and show with numerical evaluations in mobile environments with multipath propagation that the capacity improvements can be translated into significant practical performance gains compared to the orthogonal schemes in the 3GPP specifications. We also analyze the impact of real channel estimation and show that significant gains in terms of spectral efficiency or coverage area are still available even with estimation errors and imperfect interference cancellation for the two-layered superposition system

    A Dynamic Clustering and Resource Allocation Algorithm for Downlink CoMP Systems with Multiple Antenna UEs

    Full text link
    Coordinated multi-point (CoMP) schemes have been widely studied in the recent years to tackle the inter-cell interference. In practice, latency and throughput constraints on the backhaul allow the organization of only small clusters of base stations (BSs) where joint processing (JP) can be implemented. In this work we focus on downlink CoMP-JP with multiple antenna user equipments (UEs) and propose a novel dynamic clustering algorithm. The additional degrees of freedom at the UE can be used to suppress the residual interference by using an interference rejection combiner (IRC) and allow a multistream transmission. In our proposal we first define a set of candidate clusters depending on long-term channel conditions. Then, in each time block, we develop a resource allocation scheme by jointly optimizing transmitter and receiver where: a) within each candidate cluster a weighted sum rate is estimated and then b) a set of clusters is scheduled in order to maximize the system weighted sum rate. Numerical results show that much higher rates are achieved when UEs are equipped with multiple antennas. Moreover, as this performance improvement is mainly due to the IRC, the gain achieved by the proposed approach with respect to the non-cooperative scheme decreases by increasing the number of UE antennas.Comment: 27 pages, 8 figure

    A Survey on Wireless Security: Technical Challenges, Recent Advances and Future Trends

    Full text link
    This paper examines the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state-of-the-art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. We also introduce the family of various jamming attacks and their counter-measures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.Comment: 36 pages. Accepted to Appear in Proceedings of the IEEE, 201

    Power efficient dynamic resource scheduling algorithms for LTE

    Get PDF
    • 

    corecore