13,078 research outputs found

    Distributed Representation of Geometrically Correlated Images with Compressed Linear Measurements

    Get PDF
    This paper addresses the problem of distributed coding of images whose correlation is driven by the motion of objects or positioning of the vision sensors. It concentrates on the problem where images are encoded with compressed linear measurements. We propose a geometry-based correlation model in order to describe the common information in pairs of images. We assume that the constitutive components of natural images can be captured by visual features that undergo local transformations (e.g., translation) in different images. We first identify prominent visual features by computing a sparse approximation of a reference image with a dictionary of geometric basis functions. We then pose a regularized optimization problem to estimate the corresponding features in correlated images given by quantized linear measurements. The estimated features have to comply with the compressed information and to represent consistent transformation between images. The correlation model is given by the relative geometric transformations between corresponding features. We then propose an efficient joint decoding algorithm that estimates the compressed images such that they stay consistent with both the quantized measurements and the correlation model. Experimental results show that the proposed algorithm effectively estimates the correlation between images in multi-view datasets. In addition, the proposed algorithm provides effective decoding performance that compares advantageously to independent coding solutions as well as state-of-the-art distributed coding schemes based on disparity learning

    Compressed Sensing And Joint Acquisition Techniques In Mri

    Get PDF
    The relatively long scan times in Magnetic Resonance Imaging (MRI) limits some clinical applications and the ability to collect more information in a reasonable period of time. Practically, 3D imaging requires longer acquisitions which can lead to a reduction in image quality due to motion artifacts, patient discomfort, increased costs to the healthcare system and loss of profit to the imaging center. The emphasis in reducing scan time has been to a large degree through using limited k-space data acquisition and special reconstruction techniques. Among these approaches are data extrapolation methods such as constrained reconstruction techniques, data interpolation methods such as parallel imaging, and more recently another technique known as Compressed Sensing (CS). In order to recover the image components from far fewer measurements, CS exploits the compressible nature of MR images by imposing randomness in k-space undersampling schemes. In this work, we explore some intuitive examples of CS reconstruction leading to a primitive algorithm for CS MR imaging. Then, we demonstrate the application of this algorithm to MR angiography (MRA) with the goal of reducing the scan time. Our results showed reconstructions with comparable results to the fully sampled MRA images, providing up to three times faster image acquisition via CS. The CS performance in recovery of the vessels in MRA, showed slightly shrinkage of both the width of and amplitude of the vessels in 20% undersampling scheme. The spatial location of the vessels however remained intact during CS reconstruction. Another direction we pursue is the introduction of joint acquisition for accelerated multi data point MR imaging such as multi echo or dynamic imaging. Keyhole imaging and view sharing are two techniques for accelerating dynamic acquisitions, where some k-space data is shared between neighboring acquisitions. In this work, we combine the concept of CS random sampling with keyhole imaging and view sharing techniques, in order to improve the performance of each method by itself and reduce the scan time. Finally, we demonstrate the application of this new method in multi-echo spin echo (MSE) T2 mapping and compare the results with conventional methods. Our proposed technique can potentially provide up to 2.7 times faster image acquisition. The percentage difference error maps created from T2 maps generated from images with joint acquisition and fully sampled images, have a histogram with a 5-95 percentile of less than 5% error. This technique can potentially be applied to other dynamic imaging acquisitions such as multi flip angle T1 mapping or time resolved contrast enhanced MRA

    Simultaneous use of Individual and Joint Regularization Terms in Compressive Sensing: Joint Reconstruction of Multi-Channel Multi-Contrast MRI Acquisitions

    Get PDF
    Purpose: A time-efficient strategy to acquire high-quality multi-contrast images is to reconstruct undersampled data with joint regularization terms that leverage common information across contrasts. However, these terms can cause leakage of uncommon features among contrasts, compromising diagnostic utility. The goal of this study is to develop a compressive sensing method for multi-channel multi-contrast magnetic resonance imaging (MRI) that optimally utilizes shared information while preventing feature leakage. Theory: Joint regularization terms group sparsity and colour total variation are used to exploit common features across images while individual sparsity and total variation are also used to prevent leakage of distinct features across contrasts. The multi-channel multi-contrast reconstruction problem is solved via a fast algorithm based on Alternating Direction Method of Multipliers. Methods: The proposed method is compared against using only individual and only joint regularization terms in reconstruction. Comparisons were performed on single-channel simulated and multi-channel in-vivo datasets in terms of reconstruction quality and neuroradiologist reader scores. Results: The proposed method demonstrates rapid convergence and improved image quality for both simulated and in-vivo datasets. Furthermore, while reconstructions that solely use joint regularization terms are prone to leakage-of-features, the proposed method reliably avoids leakage via simultaneous use of joint and individual terms. Conclusion: The proposed compressive sensing method performs fast reconstruction of multi-channel multi-contrast MRI data with improved image quality. It offers reliability against feature leakage in joint reconstructions, thereby holding great promise for clinical use.Comment: 13 pages, 13 figures. Submitted for possible publicatio

    Joint Reconstruction of Multi-view Compressed Images

    Full text link
    The distributed representation of correlated multi-view images is an important problem that arise in vision sensor networks. This paper concentrates on the joint reconstruction problem where the distributively compressed correlated images are jointly decoded in order to improve the reconstruction quality of all the compressed images. We consider a scenario where the images captured at different viewpoints are encoded independently using common coding solutions (e.g., JPEG, H.264 intra) with a balanced rate distribution among different cameras. A central decoder first estimates the underlying correlation model from the independently compressed images which will be used for the joint signal recovery. The joint reconstruction is then cast as a constrained convex optimization problem that reconstructs total-variation (TV) smooth images that comply with the estimated correlation model. At the same time, we add constraints that force the reconstructed images to be consistent with their compressed versions. We show by experiments that the proposed joint reconstruction scheme outperforms independent reconstruction in terms of image quality, for a given target bit rate. In addition, the decoding performance of our proposed algorithm compares advantageously to state-of-the-art distributed coding schemes based on disparity learning and on the DISCOVER

    (k,q)-Compressed Sensing for dMRI with Joint Spatial-Angular Sparsity Prior

    Full text link
    Advanced diffusion magnetic resonance imaging (dMRI) techniques, like diffusion spectrum imaging (DSI) and high angular resolution diffusion imaging (HARDI), remain underutilized compared to diffusion tensor imaging because the scan times needed to produce accurate estimations of fiber orientation are significantly longer. To accelerate DSI and HARDI, recent methods from compressed sensing (CS) exploit a sparse underlying representation of the data in the spatial and angular domains to undersample in the respective k- and q-spaces. State-of-the-art frameworks, however, impose sparsity in the spatial and angular domains separately and involve the sum of the corresponding sparse regularizers. In contrast, we propose a unified (k,q)-CS formulation which imposes sparsity jointly in the spatial-angular domain to further increase sparsity of dMRI signals and reduce the required subsampling rate. To efficiently solve this large-scale global reconstruction problem, we introduce a novel adaptation of the FISTA algorithm that exploits dictionary separability. We show on phantom and real HARDI data that our approach achieves significantly more accurate signal reconstructions than the state of the art while sampling only 2-4% of the (k,q)-space, allowing for the potential of new levels of dMRI acceleration.Comment: To be published in the 2017 Computational Diffusion MRI Workshop of MICCA
    corecore