4,087 research outputs found

    MIMO Assisted Space-Code-Division Multiple-Access: Linear Detectors and Performance over Multipath Fading Channels

    No full text
    In this contribution we propose and investigate a multiple-input multiple-output space-division, code-division multiple-access (MIMO SCDMA) scheme. The main objective is to improve the capacity of the existing DS-CDMA systems, for example, for supporting an increased number of users, by deploying multiple transmit and receive antennas in the corresponding systems and by using some advanced transmission and detection algorithms. In the proposed MIMO SCDMA system, each user can be distinguished jointly by its spreading code-signature and its unique channel impulse response (CIR) transfer function referred to as spatial-signature. Hence, the number of users might be supported by the MIMO SCDMA system and the corresponding achievable performance are determined by the degrees of freedom provided by both the code-signatures and the spatial-signatures, as well as by how efficiently the degrees of freedom are exploited. Specifically, the number of users supported by the proposed MIMO SCDMA can be significantly higher than the number of chips per bit, owing to the employment of space-division. In this contribution space-time spreading (STS) is employed for configuring the transmitted signals. Three types of low-complexity linear detectors, namely correlation, decorrelating and minimum mean-square error (MMSE), are considered for detecting the MIMO SCDMA signals. The BER performance of the MIMO SCDMA system associated with these linear detectors are evaluated by simulations, when assuming that the MIMO SCDMA signals are transmitted over multipath Rayleigh fading channels. Our study and simulation results show that MIMO SCDMA assisted by multiuser detection is capable of facilitating joint space-time de-spreading, multipath combining and receiver diversity combining, while simultaneously suppressing the multiuser interfering signals

    Quantum-inspired computational imaging

    Get PDF
    Computational imaging combines measurement and computational methods with the aim of forming images even when the measurement conditions are weak, few in number, or highly indirect. The recent surge in quantum-inspired imaging sensors, together with a new wave of algorithms allowing on-chip, scalable and robust data processing, has induced an increase of activity with notable results in the domain of low-light flux imaging and sensing. We provide an overview of the major challenges encountered in low-illumination (e.g., ultrafast) imaging and how these problems have recently been addressed for imaging applications in extreme conditions. These methods provide examples of the future imaging solutions to be developed, for which the best results are expected to arise from an efficient codesign of the sensors and data analysis tools.Y.A. acknowledges support from the UK Royal Academy of Engineering under the Research Fellowship Scheme (RF201617/16/31). S.McL. acknowledges financial support from the UK Engineering and Physical Sciences Research Council (grant EP/J015180/1). V.G. acknowledges support from the U.S. Defense Advanced Research Projects Agency (DARPA) InPho program through U.S. Army Research Office award W911NF-10-1-0404, the U.S. DARPA REVEAL program through contract HR0011-16-C-0030, and U.S. National Science Foundation through grants 1161413 and 1422034. A.H. acknowledges support from U.S. Army Research Office award W911NF-15-1-0479, U.S. Department of the Air Force grant FA8650-15-D-1845, and U.S. Department of Energy National Nuclear Security Administration grant DE-NA0002534. D.F. acknowledges financial support from the UK Engineering and Physical Sciences Research Council (grants EP/M006514/1 and EP/M01326X/1). (RF201617/16/31 - UK Royal Academy of Engineering; EP/J015180/1 - UK Engineering and Physical Sciences Research Council; EP/M006514/1 - UK Engineering and Physical Sciences Research Council; EP/M01326X/1 - UK Engineering and Physical Sciences Research Council; W911NF-10-1-0404 - U.S. Defense Advanced Research Projects Agency (DARPA) InPho program through U.S. Army Research Office; HR0011-16-C-0030 - U.S. DARPA REVEAL program; 1161413 - U.S. National Science Foundation; 1422034 - U.S. National Science Foundation; W911NF-15-1-0479 - U.S. Army Research Office; FA8650-15-D-1845 - U.S. Department of the Air Force; DE-NA0002534 - U.S. Department of Energy National Nuclear Security Administration)Accepted manuscrip

    Nearly orthogonal, doppler tolerant waveforms and signal processing for multi-mode radar applications

    Get PDF
    In this research, we investigate the design and analysis of nearly orthogonal, Doppler tolerant waveforms for diversity waveform radar applications. We then present a signal processing framework for joint synthetic aperture radar (SAR) and ground moving target indication (GMTI) processing that is built upon our proposed waveforms. ^ To design nearly orthogonal and Doppler tolerant waveforms, we applied direct sequence spread spectrum (DSSS) coding techniques to linear frequency modulated (LFM) signals. The resulting transmitted waveforms are rendered orthogonal using a unique spread spectrum code. At the receiver, the echo signal can be decoded using its spreading code. In this manner, transmit orthogonal waveforms can be matched filtered only with the intended receive signals. ^ Our proposed waveforms enable efficient SAR and GMTI processing concurrently without reconfiguring a radar system. Usually, SAR processing requires transmit waveforms with a low pulse repetition frequency (PRF) rate to reduce range ambigu- ity; on the other hand, GMTI processing requires a high PRF rate to avoid Doppler aliasing and ambiguity. These competing requirements can be tackled by employing some waveforms (with low PRF) for the SAR mission and other waveforms (with high PRF) for the GMTI mission. Since the proposed waveforms allow separation of individual waveforms at the receiver, we can accomplish both SAR and GMTI processing jointl
    corecore