303 research outputs found

    Unveiling the Molecular Mechanisms Regulating the Activation of the ErbB Family Receptors at Atomic Resolution through Molecular Modeling and Simulations

    Get PDF
    The EGFR/ErbB/HER family of kinases contains four homologous receptor tyrosine kinases that are important regulatory elements in key signaling pathways. To elucidate the atomistic mechanisms of dimerization-dependent activation in the ErbB family, we have performed molecular dynamics simulations of the intracellular kinase domains of the four members of the ErbB family (those with known kinase activity), namely EGFR, ErbB2 (HER2) and ErbB4 (HER4) as well as ErbB3 (HER3), an assumed pseudokinase, in different molecular contexts: monomer vs. dimer, wildtype vs. mutant. Using bioinformatics and fluctuation analyses of the molecular dynamics trajectories, we relate sequence similarities to correspondence of specific bond-interaction networks and collective dynamical modes. We find that in the active conformation of the ErbB kinases (except ErbB3), key subdomain motions are coordinated through conserved hydrophilic interactions: activating bond-networks consisting of hydrogen bonds and salt bridges. The inactive conformations also demonstrate conserved bonding patterns (albeit less extensive) that sequester key residues and disrupt the activating bond network. Both conformational states have distinct hydrophobic advantages through context-specific hydrophobic interactions. The inactive ErbB3 kinase domain also shows coordinated motions similar to the active conformations, in line with recent evidence that ErbB3 is a weakly active kinase, though the coordination seems to arise from hydrophobic interactions rather than hydrophilic ones. We show that the functional (activating) asymmetric kinase dimer interface forces a corresponding change in the hydrophobic and hydrophilic interactions that characterize the inactivating interaction network, resulting in motion of the αC-helix through allostery. Several of the clinically identified activating kinase mutations of EGFR act in a similar fashion to disrupt the inactivating interaction network. Our molecular dynamics study reveals the asymmetric dimer interface helps progress the ErbB family through the activation pathway using both hydrophilic and hydrophobic interaction. There is a fundamental difference in the sequence of events in EGFR activation compared with that described for the Src kinase Hck

    Role of water in protein folding, oligomerization, amyloidosis and miniprotein

    Get PDF
    The essential involvement of water in most fundamental extra-cellular and intracellular processes of proteins is critically reviewed and evaluated in this article. The role of water in protein behavior displays structural ambivalence; it can protect the disordered peptide-chain by hydration or helps the globular chain-folding, but promotes also the protein aggregation, as well (see: diseases). A variety of amyloid diseases begins as benign protein monomers but develops then into toxic amyloid aggregates of fibrils. Our incomplete knowledge of this process emphasizes the essential need to reveal the principles of governing this oligomerization. To understand the biophysical basis of the simpler in vitro amyloid formation may help to decipher also the in vivo way. Nevertheless, to ignore the central role of the water's effect among these events means to receive an uncompleted picture of the true phenomenon. Therefore this review represents a stopgap role, because the most published studies—with a few exceptions—have been neglected the crucial importance of water in the protein research. The following questions are discussed from the water's viewpoint: (i) interactions between water and proteins, (ii) protein hydration/dehydration, (iii) folding of proteins and miniproteins, (iv) peptide/protein oligomerization, and (v) amyloidosis

    Machine Learning based Protein Sequence to (un)Structure Mapping and Interaction Prediction

    Get PDF
    Proteins are the fundamental macromolecules within a cell that carry out most of the biological functions. The computational study of protein structure and its functions, using machine learning and data analytics, is elemental in advancing the life-science research due to the fast-growing biological data and the extensive complexities involved in their analyses towards discovering meaningful insights. Mapping of protein’s primary sequence is not only limited to its structure, we extend that to its disordered component known as Intrinsically Disordered Proteins or Regions in proteins (IDPs/IDRs), and hence the involved dynamics, which help us explain complex interaction within a cell that is otherwise obscured. The objective of this dissertation is to develop machine learning based effective tools to predict disordered protein, its properties and dynamics, and interaction paradigm by systematically mining and analyzing large-scale biological data. In this dissertation, we propose a robust framework to predict disordered proteins given only sequence information, using an optimized SVM with RBF kernel. Through appropriate reasoning, we highlight the structure-like behavior of IDPs in disease-associated complexes. Further, we develop a fast and effective predictor of Accessible Surface Area (ASA) of protein residues, a useful structural property that defines protein’s exposure to partners, using regularized regression with 3rd-degree polynomial kernel function and genetic algorithm. As a key outcome of this research, we then introduce a novel method to extract position specific energy (PSEE) of protein residues by modeling the pairwise thermodynamic interactions and hydrophobic effect. PSEE is found to be an effective feature in identifying the enthalpy-gain of the folded state of a protein and otherwise the neutral state of the unstructured proteins. Moreover, we study the peptide-protein transient interactions that involve the induced folding of short peptides through disorder-to-order conformational changes to bind to an appropriate partner. A suite of predictors is developed to identify the residue-patterns of Peptide-Recognition Domains from protein sequence that can recognize and bind to the peptide-motifs and phospho-peptides with post-translational-modifications (PTMs) of amino acid, responsible for critical human diseases, using the stacked generalization ensemble technique. The involved biologically relevant case-studies demonstrate possibilities of discovering new knowledge using the developed tools

    The unique disulfide linked activation loop of DYRK kinases and possible redox activity control

    Get PDF
    The cysteine of HCD (C286) in DYRK1A is involved in disulfide bridge formation with a cysteine (C312) in the DFGSSC sequence. The purpose of this project was to investigate how the state of the disulfide bridge would affect enzyme catalytic and ligand binding properties of the protein kinase. A mutant, DYRK1A C312A, was thus designed to eliminate the disulfide bridge. The mutant was expressed and purified following the same protocol as for DYRK1A wt, including HisTrap purification, TEV cleavage and size exclusion chromatography. Crystallization trials were performed for both the wt and the mutant with the kinase inhibitor Staurosporine. DYRK1A wt with STU crystallized and diffracted with at a resolution of 2.33 Å. The DYRK1A C312A mutant with STU crystallized and diffracted with a resolution of 2.59 Å. The structure was solved by molecular replacement in Molrep (CCP4) and refined by Refmac5 and Phenix. Molecular dynamics (MD) simulations (SCHRODINGER) were performed with the intent to compare diverse disulfide bridge states. Ligand binding and enzyme catalytic properties were analyzed using a combination of techniques, including activity assays, microscale thermophoresis, and isothermal calorimetry. The Thermofluor assay confirmed that both the wt and the mutant bind tightly to STU and AZ-191. It also showed that the mutant consistently has a slightly lower melting temperature than the wt, which would indicate that it is less stable. Solvent accessible surface area (SASA) analysis support the theory of accessibility to conserved cysteine residues

    Roles of cosolvents on protein stability

    Get PDF
    The function of a protein is determined by its three-dimensional structure which emerges from the delicate balance of forces involving atoms of the protein and the solvent. This balance can be perturbed by changing temperature, pressure, pH and by adding organic molecules known as cosolvents to the solution. Despite the wide use of cosolvents to perturb protein structures in the lab and in living systems, their molecular mechanisms are still not well established. Understanding these mechanisms is a problem of substantial interest, with potential application to the design of new drugs to target proteins. In this dissertation, we probe the role of two major cosolvents, urea and trimethylamine N-oxide (TMAO) at atomic level. Urea is widely used as a denaturant in the lab to destabilize native protein conformations. However, the atomic mechanism of this molecule remains a question of debate. To unravel its molecular mechanism, explicit all-atom molecular dynamics simulations of unrestrained and extended poly-alanine and poly-leucine dimers are performed. Consistent with experimental results, we find that the large non-polar side chain of leucine is affected by urea whereas backbone atoms and alanine’s side chain are not. Urea is found to occupy positions between leucine’s side chains that are not accessible to water. This accounts for extra Lennard-Jones bonds between urea and side chains that favors the unfolded state. These bonds compete with urea-solvent interactions that favor the folded state. The sum of these two energetic terms provides the enthalpic driving force for unfolding. It is shown here that this enthalpy correlates with the potential of mean force of poly-leucine dimers. To provide insights into the stabilizing mechanisms TMAO on protein structures, microsecond all-atom molecular dynamics simulations of peptides and replica exchange molecular dynamics simulations (REMD) of the Trp-cage miniprotein are performed. Most previous studies have focused on the effect of this osmolyte on protein backbone. Our results are consistent with these studies as we show that TMAO induces the backbone to adopt compact conformations. However, it is shown that effects of TMAO on the backbone are not dominant. In particular, TMAO\u27s effect on the backbone is overcompensated by its destabilizing effect on the hydrophobic core: non-polar peptides and residues forming the hydrophobic core of the Trp-cage protein adopt more extended conformations in solutions containing TMAO. It is found that a main interaction that can stabilize folded proteins are charge-charge interactions. In light of these results, we propose that competing effects of TMAO on hydrophobic and charge-charge interactions account for its net stabilizing role on proteins

    Identification of Regions Responsible for the Open Conformation of S100A10 Using Chimaeric S100A11/S100A10 Proteins

    Get PDF
    S100A11 is a dimeric, EF-hand calcium-binding protein. Calcium binding to S100A11 results in a large conformational change that uncovers a broad hydrophobic surface used to interact with phospholipid-binding proteins (annexins A1 and A2), and facilitate membrane vesiculation events. In contrast to other S100 proteins, S100A10 is unable to bind calcium due to deletion and substitution of calcium-ligating residues. Despite this, calcium-free S100A10 assumes an “open” conformation that is very similar to S100A11 in its calcium-bound state (Ca2+-S100A11). To understand how S100A10 is able to adopt an open conformation in the absence of calcium, seven chimeric proteins were constructed where regions from calcium-binding sites I and II, and helices II-IV in S100A11 were replaced with the corresponding regions of S100A10. The chimeric proteins having substitutions in calcium-binding site II displayed increased hydrophobic surface exposure as assessed by ANS fluorescence and phenyl Sepharose binding in the absence of calcium. This response is similar to that observed for Ca2+-S100A11 and calcium-free S100A10. Further, this substitution resulted in calcium-insensitive binding to annexin A2 for one chimeric protein. The results indicate that residues within site II are important in stabilizing the open conformation of S100A10 and presentation of its target-binding site. In contrast, S100A11 chimeric proteins with helical substitutions displayed poorer hydrophobic surface exposure and consequently, unobservable annexin A2 binding. This work represents a first attempt to systematically understand the molecular basis for the calcium-insensitive open conformation of S100A10

    PAS Signaling Mechanisms in Aer and Aer2

    Get PDF
    PAS domains are widespread signal sensors that share a conserved three-dimensional αÎČ fold that consists of a central ÎČ-sheet flanked by several α- helices. The aerotaxis receptor Aer from Escherichia coli and the Aer2 chemoreceptor from Pseudomonas aeruginosa both contain PAS domains. Aer senses oxygen (O2) indirectly via an FAD cofactor bound to its PAS domain, while Aer2 directly binds O2 to its PAS b-type heme cofactor. The Aer and Aer2 PAS domains both interact with a signal transduction domain known as a HAMP domain. The PAS-HAMP arrangement differs between Aer and Aer2, with Aer- PAS residing adjacent to its HAMP domain, and Aer2-PAS being sandwiched linearly between three N-terminal and two C-terminal HAMP domains. The differences between these PAS-HAMP architectures raise the possibility of two different PAS-HAMP signaling mechanisms: a lateral PAS-HAMP signaling mechanism for Aer, and a linear PAS-HAMP signaling mechanism for Aer2. This dissertation focuses on uncovering the PAS-HAMP transduction mechanisms and clarifying the signaling of conserved residues in Aer and Aer2 PAS. In Aer, I determined that a region on the PAS ÎČ-scaffold was sequestered by direct interaction with the HAMP domain. These data support a novel lateral PAS-HAMP arrangement that is crucial for Aer signaling. In Aer2, I demonstrated that unique PAS domain residues are involved in heme-binding, oxygen-binding and PAS signal initiation. My data provide the first functional corroboration of the Aer2 PAS signaling mechanism previously proposed from structure. The work presented in this dissertation demonstrates two variations of PAS-HAMP signaling mechanisms, both involving a global conformational change of the PAS domain that is transmitted from the PAS ÎČ-scaffold to the HAMP domain. My Aer and Aer2 studies provide the first direct evidence that HAMP domains can be activated by either linear or lateral interaction with a sensor module. Studying PAS-HAMP signaling mechanisms will help in understanding how sensing domains activate chemosensory systems that are involved in the survival of both commensal and pathogenic bacteria

    Tripartite degrons confer diversity and specificity on regulated protein degradation in the ubiquitin-proteasome system

    Get PDF
    Specific signals (degrons) regulate protein turnover mediated by the ubiquitin-proteasome system. Here we systematically analyse known degrons and propose a tripartite model comprising the following: (1) a primary degron (peptide motif) that specifies substrate recognition by cognate E3 ubiquitin ligases, (2) secondary site(s) comprising a single or multiple neighbouring ubiquitinated lysine(s) and (3) a structurally disordered segment that initiates substrate unfolding at the 26S proteasome. Primary degron sequences are conserved among orthologues and occur in structurally disordered regions that undergo E3-induced folding-on-binding. Posttranslational modifications can switch primary degrons into E3-binding-competent states, thereby integrating degradation with signalling pathways. Degradation-linked lysines tend to be located within disordered segments that also initiate substrate degradation by effective proteasomal engagement. Many characterized mutations and alternative isoforms with abrogated degron components are implicated in disease. These effects result from increased protein stability and interactome rewiring. The distributed nature of degrons ensures regulation, specificity and combinatorial control of degradation. © 2016 Nature America, Inc
    • 

    corecore