1,869 research outputs found

    Transforming Energy Networks via Peer to Peer Energy Trading: Potential of Game Theoretic Approaches

    Get PDF
    Peer-to-peer (P2P) energy trading has emerged as a next-generation energy management mechanism for the smart grid that enables each prosumer of the network to participate in energy trading with one another and the grid. This poses a significant challenge in terms of modeling the decision-making process of each participant with conflicting interest and motivating prosumers to participate in energy trading and to cooperate, if necessary, for achieving different energy management goals. Therefore, such decision-making process needs to be built on solid mathematical and signal processing tools that can ensure an efficient operation of the smart grid. This paper provides an overview of the use of game theoretic approaches for P2P energy trading as a feasible and effective means of energy management. As such, we discuss various games and auction theoretic approaches by following a systematic classification to provide information on the importance of game theory for smart energy research. Then, the paper focuses on the P2P energy trading describing its key features and giving an introduction to an existing P2P testbed. Further, the paper zooms into the detail of some specific game and auction theoretic models that have recently been used in P2P energy trading and discusses some important finding of these schemes.Comment: 38 pages, single column, double spac

    Understanding Deregulated Retail Electricity Markets in the Future: A Perspective from Machine Learning and Optimization

    Full text link
    On top of Smart Grid technologies and new market mechanism design, the further deregulation of retail electricity market at distribution level will play a important role in promoting energy system transformation in a socioeconomic way. In today’s retail electricity market, customers have very limited ”energy choice,” or freedom to choose different types of energy services. Although the installation of distributed energy resources (DERs) has become prevalent in many regions, most customers and prosumers who have local energy generation and possible surplus can still only choose to trade with utility companies.They either purchase energy from or sell energy surplus back to the utilities directly while suffering from some price gap. The key to providing more energy trading freedom and open innovation in the retail electricity market is to develop new consumer-centric business models and possibly a localized energy trading platform. This dissertation is exactly pursuing these ideas and proposing a holistic localized electricity retail market to push the next-generation retail electricity market infrastructure to be a level playing field, where all customers have an equal opportunity to actively participate directly. This dissertation also studied and discussed opportunities of many emerging technologies, such as reinforcement learning and deep reinforcement learning, for intelligent energy system operation. Some improvement suggestion of the modeling framework and methodology are included as well.Ph.D.College of Engineering & Computer ScienceUniversity of Michigan-Dearbornhttps://deepblue.lib.umich.edu/bitstream/2027.42/145686/1/Tao Chen Final Dissertation.pdfDescription of Tao Chen Final Dissertation.pdf : Dissertatio

    Hierarchical reinforcement learning for trading agents

    Get PDF
    Autonomous software agents, the use of which has increased due to the recent growth in computer power, have considerably improved electronic commerce processes by facilitating automated trading actions between the market participants (sellers, brokers and buyers). The rapidly changing market environments pose challenges to the performance of such agents, which are generally developed for specific market settings. To this end, this thesis is concerned with designing agents that can gradually adapt to variable, dynamic and uncertain markets and that are able to reuse the acquired trading skills in new markets. This thesis proposes the use of reinforcement learning techniques to develop adaptive trading agents and puts forward a novel software architecture based on the semi-Markov decision process and on an innovative knowledge transfer framework. To evaluate my approach, the developed trading agents are tested in internationally well-known market simulations and their behaviours when buying or/and selling in the retail and wholesale markets are analysed. The proposed approach has been shown to improve the adaptation of the trading agent in a specific market as well as to enable the portability of the its knowledge in new markets

    InterCloud: Utility-Oriented Federation of Cloud Computing Environments for Scaling of Application Services

    Full text link
    Cloud computing providers have setup several data centers at different geographical locations over the Internet in order to optimally serve needs of their customers around the world. However, existing systems do not support mechanisms and policies for dynamically coordinating load distribution among different Cloud-based data centers in order to determine optimal location for hosting application services to achieve reasonable QoS levels. Further, the Cloud computing providers are unable to predict geographic distribution of users consuming their services, hence the load coordination must happen automatically, and distribution of services must change in response to changes in the load. To counter this problem, we advocate creation of federated Cloud computing environment (InterCloud) that facilitates just-in-time, opportunistic, and scalable provisioning of application services, consistently achieving QoS targets under variable workload, resource and network conditions. The overall goal is to create a computing environment that supports dynamic expansion or contraction of capabilities (VMs, services, storage, and database) for handling sudden variations in service demands. This paper presents vision, challenges, and architectural elements of InterCloud for utility-oriented federation of Cloud computing environments. The proposed InterCloud environment supports scaling of applications across multiple vendor clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that federated Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 20 pages, 4 figures, 3 tables, conference pape

    How to trade electricity flexibility using artificial intelligence - An integrated algorithmic framework

    Get PDF
    In course of the energy transition, the growing share of Renewable Energy Sources (RES) makes electricity generation more decentralized and intermittent. This increases the relevance of exploiting flexibility potentials that help balancing intermittent RES supply and demand and, thus, contribute to overall system resilience. Digital technologies, in the form of automated trading algorithms, may considerably contribute to flexibility exploitation, as they enable faster and more accurate market interactions. In this paper, we develop an integrated algorithmic framework that finds an optimal trading strategy for flexibility on multiple markets. Hence, our work supports the trading of flexibility in a multi-market environment that results in enhanced market integration and harmonization of economically traded and physically delivered electricity, which finally promotes resilience in highly complex electricity systems

    Energy Management of Prosumer Communities

    Get PDF
    The penetration of distributed generation, energy storages and smart loads has resulted in the emergence of prosumers: entities capable of adjusting their electricity production and consumption in order to meet environmental goals and to participate profitably in the available electricity markets. Significant untapped potential remains in the exploitation and coordination of small and medium-sized distributed energy resources. However, such resources usually have a primary purpose, which imposes constraints on the exploitation of the resource; for example, the primary purpose of an electric vehicle battery is for driving, so the battery could be used as temporary storage for excess photovoltaic energy only if the vehicle is available for driving when the owner expects it to be. The aggregation of several distributed energy resources is a solution for coping with the unavailability of one resource. Solutions are needed for managing the electricity production and consumption characteristics of diverse distributed energy resources in order to obtain prosumers with more generic capabilities and services for electricity production, storage, and consumption. This collection of articles studies such prosumers and the emergence of prosumer communities. Demand response-capable smart loads, battery storages and photovoltaic generation resources are forecasted and optimized to ensure energy-efficient and, in some cases, profitable operation of the resources
    corecore