641 research outputs found

    PERFORMANCE OF A CAD SCHEME APPLIED TO IMAGES OBTAINED FROM MAMMOGRAPHIC FILM DIGITIZATION AND FULL-FIELD DIGITAL MAMMOGRAPHY (FFDM)

    Full text link

    A New Approach to the Detection of Mammogram Boundary

    Get PDF
    Mammography is a method used for the detection of breast cancer. computer-aided diagnostic (CAD) systems help the radiologist in the detection and interpretation of mass in breast mammography. One of the important information of a mass is its contour and its form because it provides valuable information about the abnormality of a mass. The accuracy in the recognition of the shape of a mass is related to the accuracy of the detected mass contours. In this work we propose a new approach for detecting the boundaries of lesion in mammography images based on region growing algorithm without using the threshold, the proposed method requires an initial rectangle surrounding the lesion selected manually by the radiologist (Region Of Interest), where the region growing algorithm applies on lines segments that attach each pixel of this rectangle with the seed point, such as the ends (seeds) of each line segment grow in a direction towards one another. The proposed approach is evaluated on a set of data with 20 masses of the MIAS base whose contours are annotated manually by expert radiologists. The performance of the method is evaluated in terms of specificity, sensitivity, accuracy and overlap. All the findings and details of approach are presented in detail

    A Novel Hybrid K-Means and GMM Machine Learning Model for Breast Cancer Detection

    Get PDF
    Breast cancer is the second leading cause of death among a large number of women worldwide. It may be challenging for radiologists to diagnose and treat breast cancer. Consequently, primary care improves disease prevention and death. Early detection increases treatment options and saves life, which is the major target of this research. This research indicates the versatility of the methodology by integrating contemporary segmentation approaches with machine learning methods, which are developing areas of research. In the pre-processing process, an adaptive median filter is utilized for noise removal, enhancement of image quality, conservation of edges, and smoothing. This research makes a significant contribution by proposing a new parameter for evaluating K-means and a Gaussian mixture model (GMM) performance. A hybrid combination of segmentation and detection was applied to breast cancer. The proposed technique is significant for classifying benign and malignant tumors. The simulated results are discussed and evaluated to determine the competence of this method for the early diagnosis of breast cancer. This method allows medical experts to recognize breast cancer at a faster rate and provide higher accuracy. An ANOVA test was used to determine the multi-variant analysis and prediction rate for the proposed method

    Segmentation and Feature Extraction of Tumors from Digital Mammograms

    Get PDF
    Mammography is one of the available techniques for the early detection of masses or abnormalities which is related to breast cancer. Breast Cancer is the uncontrolled of cells in the breast region, which may affect the other parts of the body. The most common abnormalities that might indicate breast cancer are masses and calcifications. Masses appear in a mammogram as fine, granular clusters and also masses will not have sharp boundaries, so often difficult to identify in a raw mammogram. Digital Mammography is one of the best available technologies currently being used for the early detection of breast cancer. Computer Aided Detection System has to be developed for the detection of masses and calcifications in Digital Mammogram, which acts as a secondary tool for the radiologists for diagnosing the breast cancer. In this paper, we have proposed a secondary tool for the radiologists that help them in the segmentation and feature extraction process. Keywords: Mammography, Breast Cancer, Masses, Calcification, Digital Mammography, Computer Aided Detection System, Segmentation, Feature Extractio

    Breast cancer diagnosis: a survey of pre-processing, segmentation, feature extraction and classification

    Get PDF
    Machine learning methods have been an interesting method in the field of medical for many years, and they have achieved successful results in various fields of medical science. This paper examines the effects of using machine learning algorithms in the diagnosis and classification of breast cancer from mammography imaging data. Cancer diagnosis is the identification of images as cancer or non-cancer, and this involves image preprocessing, feature extraction, classification, and performance analysis. This article studied 93 different references mentioned in the previous years in the field of processing and tries to find an effective way to diagnose and classify breast cancer. Based on the results of this research, it can be concluded that most of today’s successful methods focus on the use of deep learning methods. Finding a new method requires an overview of existing methods in the field of deep learning methods in order to make a comparison and case study
    corecore