1,241 research outputs found

    A Primal-Dual Algorithmic Framework for Constrained Convex Minimization

    Get PDF
    We present a primal-dual algorithmic framework to obtain approximate solutions to a prototypical constrained convex optimization problem, and rigorously characterize how common structural assumptions affect the numerical efficiency. Our main analysis technique provides a fresh perspective on Nesterov's excessive gap technique in a structured fashion and unifies it with smoothing and primal-dual methods. For instance, through the choices of a dual smoothing strategy and a center point, our framework subsumes decomposition algorithms, augmented Lagrangian as well as the alternating direction method-of-multipliers methods as its special cases, and provides optimal convergence rates on the primal objective residual as well as the primal feasibility gap of the iterates for all.Comment: This paper consists of 54 pages with 7 tables and 12 figure

    A Smooth Primal-Dual Optimization Framework for Nonsmooth Composite Convex Minimization

    Get PDF
    We propose a new first-order primal-dual optimization framework for a convex optimization template with broad applications. Our optimization algorithms feature optimal convergence guarantees under a variety of common structure assumptions on the problem template. Our analysis relies on a novel combination of three classic ideas applied to the primal-dual gap function: smoothing, acceleration, and homotopy. The algorithms due to the new approach achieve the best known convergence rate results, in particular when the template consists of only non-smooth functions. We also outline a restart strategy for the acceleration to significantly enhance the practical performance. We demonstrate relations with the augmented Lagrangian method and show how to exploit the strongly convex objectives with rigorous convergence rate guarantees. We provide numerical evidence with two examples and illustrate that the new methods can outperform the state-of-the-art, including Chambolle-Pock, and the alternating direction method-of-multipliers algorithms.Comment: 35 pages, accepted for publication on SIAM J. Optimization. Tech. Report, Oct. 2015 (last update Sept. 2016

    Generalized Forward-Backward Splitting

    Full text link
    This paper introduces the generalized forward-backward splitting algorithm for minimizing convex functions of the form F+∑i=1nGiF + \sum_{i=1}^n G_i, where FF has a Lipschitz-continuous gradient and the GiG_i's are simple in the sense that their Moreau proximity operators are easy to compute. While the forward-backward algorithm cannot deal with more than n=1n = 1 non-smooth function, our method generalizes it to the case of arbitrary nn. Our method makes an explicit use of the regularity of FF in the forward step, and the proximity operators of the GiG_i's are applied in parallel in the backward step. This allows the generalized forward backward to efficiently address an important class of convex problems. We prove its convergence in infinite dimension, and its robustness to errors on the computation of the proximity operators and of the gradient of FF. Examples on inverse problems in imaging demonstrate the advantage of the proposed methods in comparison to other splitting algorithms.Comment: 24 pages, 4 figure

    Truncated Nonsmooth Newton Multigrid for phase-field brittle-fracture problems

    Get PDF
    We propose the Truncated Nonsmooth Newton Multigrid Method (TNNMG) as a solver for the spatial problems of the small-strain brittle-fracture phase-field equations. TNNMG is a nonsmooth multigrid method that can solve biconvex, block-separably nonsmooth minimization problems in roughly the time of solving one linear system of equations. It exploits the variational structure inherent in the problem, and handles the pointwise irreversibility constraint on the damage variable directly, without penalization or the introduction of a local history field. Memory consumption is significantly lower compared to approaches based on direct solvers. In the paper we introduce the method and show how it can be applied to several established models of phase-field brittle fracture. We then prove convergence of the solver to a solution of the nonsmooth Euler-Lagrange equations of the spatial problem for any load and initial iterate. Numerical comparisons to an operator-splitting algorithm show a speed increase of more than one order of magnitude, without loss of robustness
    • …
    corecore