9 research outputs found

    Validation data for a hybrid smoothed dissipative particle dynamics (SDPD) spatial stochastic simulation algorithm (sSSA) method

    No full text
    We present the validation of the hybrid sSSA-SDPD method for advection-diffusion-reaction problems coupled to discrete biochemical systems, as presented in the publication β€œA hybrid smoothed dissipative particle dynamics (SDPD) spatial stochastic simulation algorithm (sSSA) for advection-diffusion-reaction problems” (Drawert et al., 2019). We validate 1D diffusion, and 2D diffusion cases against their analytical solutions. We present graphs and tables of data showing the error in the simulation method

    Multiscale analyses of cellular signaling and regulation in response to multiple stress conditions

    Get PDF
    Understanding the relationship between signaling and its corresponding cellular response is critical to combating stress responses, especially responses related antibiotic resistance and non-genetic phenotypic transitions to antibiotic tolerance. However, bacterial signal responses are notoriously noisy and difficult to predict. This work first develops a multiscale cell cycle-aware signal modeling framework to explore the energetics and dynamics of the phosphate starvation stress response two-component system, PhoBR, to better understand the relationship between stress response proteins and the bounds of cellular memory in stress response. I found that the transcription factor responsible for stress response remains nominally β€œactive” for 2-4 generations after the stress response is relieved due to sequestration effects, with differential memory in offspring cells dictated by stochastic protein inheritance. Next, I studied a novel antibiotic persister phenotype that arises in non-canonical conditions. This phenotype exhibited a previously unknown stress response that resulted in growth arrest, granting it antibiotic tolerance. The tolerance seems to be imparted by a global stress response arising from toxic excessive lactose import, seemingly opposite of the starvation response that induces canonical persister cell formation. Finally, I improved the PhoBR stress response model to measure stochastic fluctuations of proteins within the two-component system to identify the principles of signal fluctuations and how they drive variability in the bacterial cell cycle (i.e., growth rate). The downstream regulon of the PhoB response regulator is the main driver of the growth rate, but the transcriptionally active dimerized PhoB acts as the link between fast molecular fluctuations and slower gene expression fluctuations within the system. Finally, I present a vision for future developments of this style of modeling to include spatial information

    ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡ˜Π° Π·Π° синтСзу Ρ€Π΅Π°ΠΊΡ‚ΠΎΡ€Π° заснована Π½Π° ΠΊΠΎΠ½Ρ†Π΅ΠΏΡ‚ΠΈΠΌΠ° ΠΈΠ½Ρ‚Π΅Π½Π·ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ˜Π΅ процСса ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΡ˜Π΅

    Get PDF
    In this Ph.D. thesis, a new methodology for Reactor Synthesis Based on Process Intensification Concepts and Application of Optimization Methods (ReSyPIO) is presented and applied to two different cases. In Chapter 1: Introduction – Motivation and Objectives, the motive for the research is presented, and Hypotheses are formulated. The ReSyPIO methodology that rests upon these Hypotheses and consists of three consecutive stages is briefly described in this Chapter. The first stage encapsulates all present phases and phenomena inside the reactor functional building block, called module. Modules come as a direct result of a conceptual representation of the analyzed system. In the second stage, modules are further segmented if needed and interconnected, creating a reactor superstructure that is mathematically described for all desirable operating regimes. In the last stage of the ReSyPIO methodology, the optimal structure, operating conditions, and the operational regime are determined with the use of rigorous optimization. All three stages of the ReSyPIO methodology have a backflow, meaning that if analysis leads to impractical, nonfunctional or inefficient results, modifications in reactor superstructure and modules can be made. The objective is to conceptually and numerically derive the most efficient reactor structure and a set of operating conditions that would be used as a starting point in the future reactor design. Chapter 2: Literature Review is used to cover and review the most important research published in the area of Process Intensification and different Process System Engineering techniques. Different approaches and studies present in academia are highlighted and their elements compared with the presented ReSyPIO methodology with the accent on its advantages and contribution to the engineering science community.Also, in this Chapter, an array of well researched analytical and numerical approaches is presented that could be used in the future to strengthen the ReSyPIO methodology further and facilitate its easier application. In Chapter 3: Description of the ReSyPIO Methodology Reactor Synthesis based on Process Intensification and Optimization of Superstructure is explained in detail, with a graphical representation of the main building block, called Phenomenological Module. A general explanation is given on how to form a reactor superstructure and mathematically describe it with sets of material and energy balance equations that correspond to a number of present phases and components in the system. The ReSyPIO methodology is first applied to a generic case of two parallel reactions in Chapter 4, called Application of the ReSyPIO Methodology on a Generic Reaction Case. The case corresponds to two parallel reactions that could be found in the fine chemical industry. The reactions are endothermic and slow with the undesired product. After the application of the ReSyPIO methodology, an optimal reactor structure consisting of a segmented module with 17 side inlets for the reactant and heat source is obtained. It is recommended for the reactor to work in a continuous steady-state mode as the dynamic operation would not lead to a sufficient increase in reactor efficiency...Π£ овој Π΄ΠΎΠΊΡ‚ΠΎΡ€ΡΠΊΠΎΡ˜ Π΄ΠΈΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡ˜ΠΈ јС прСдстављСна ΠΈ ΠΏΡ€ΠΈΠΌΠ΅ΡšΠ΅Π½Π° Π½ΠΎΠ²Π° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡ˜Π° Π·Π° синтСзу Ρ€Π΅Π°ΠΊΡ‚ΠΎΡ€Π° заснована Π½Π° ΠΊΠΎΠ½Ρ†Π΅ΠΏΡ‚ΠΈΠΌΠ° ΠΈΠ½Ρ‚Π΅Π½Π·ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ˜Π΅ процСса ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΈΡ… ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΎΠ½ΠΈΡ… Ρ‚Π΅Ρ…Π½ΠΈΠΊΠ° (Reactor Synthesis Based on Process Intensification Concepts and Application of Optimization Methods – ReSyPIO). Π£ ΠΏΠΎΠ³Π»Π°Π²Ρ™Ρƒ Π£Π²ΠΎΠ΄ – ΠœΠΎΡ‚ΠΈΠ²Π°Ρ†ΠΈΡ˜Π° ΠΈ Ρ†ΠΈΡ™Π΅Π²ΠΈ, Ρ„ΠΎΡ€ΠΌΠΈΡ€Π°Π½Π΅ су Ρ…ΠΈΠΏΠΎΡ‚Π΅Π·Π΅ Π½Π° којима ΠΏΠΎΡ‡ΠΈΠ²Π° ReSyPIO ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡ˜Π° ΠΈ Π΄Π°Ρ‚Π° јС ΠΌΠΎΡ‚ΠΈΠ²Π°Ρ†ΠΈΡ˜Π° Π·Π° ΠΈΡΡ‚Ρ€Π°ΠΆΠΈΠ²Π°ΡšΠ΅. ReSyPIO ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡ˜Π° јС ΡƒΠΊΡ€Π°Ρ‚ΠΊΠΎ прСдстављСна ΠΈ описана ΠΊΡ€ΠΎΠ· Ρ‚Ρ€ΠΈ узастопнС Π΅Ρ‚Π°ΠΏΠ΅. ΠŸΡ€Π²Π° Π΅Ρ‚Π°ΠΏΠ° ΡƒΠΎΠΊΠ²ΠΈΡ€Π°Π²Π° свС присутнС Ρ„Π°Π·Π΅ ΠΈ Ρ„Π΅Π½ΠΎΠΌΠ΅Π½Π΅ Ρƒ Ρ€Π΅Π°ΠΊΡ‚ΠΎΡ€Ρƒ ΡƒΠ½ΡƒΡ‚Π°Ρ€ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»Π½ΠΈΡ… Π³Ρ€Π°Π΄ΠΈΠ²Π½ΠΈΡ… Ρ˜Π΅Π΄ΠΈΠ½ΠΈΡ†Π°, Π½Π°Π·Π²Π°Π½ΠΈΡ… ΠΌΠΎΠ΄ΡƒΠ»ΠΈ. ΠœΠΎΠ΄ΡƒΠ»ΠΈ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Ρ™Π°Ρ˜Ρƒ Ρ€Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚ ΠΊΠΎΠ½Ρ†Π΅ΠΏΡ‚ΡƒΠ°Π»Π½ΠΎΠ³ ΠΏΡ€ΠΈΠΊΠ°Π·Π° Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€Π°Π½ΠΎΠ³ систСма. Π£ Π΄Ρ€ΡƒΠ³ΠΎΡ˜ Π΅Ρ‚Π°ΠΏΠΈ, ΠΌΠΎΠ΄ΡƒΠ»ΠΈ сС ΠΏΠΎ ΠΏΠΎΡ‚Ρ€Π΅Π±ΠΈ ΠΌΠΎΠ³Ρƒ Π΄Π°Ρ™Π΅ ΠΏΠΎΠ΄Π΅Π»ΠΈΡ‚ΠΈ Ρƒ сСгмСнтС ΠΈ мСђусобно ΠΏΠΎΠ²Π΅Π·Π°Ρ‚ΠΈ, ΠΊΡ€Π΅ΠΈΡ€Π°Ρ˜ΡƒΡ›ΠΈ супСрструктуру Ρ€Π΅Π°ΠΊΡ‚ΠΎΡ€Π°. БупСрструктура јС ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡ΠΊΠΈ описана Π·Π° свС Ρ€Π΅ΠΆΠΈΠΌΠ΅ Ρ€Π°Π΄Π° Ρ€Π΅Π°ΠΊΡ‚ΠΎΡ€Π° ΠΎΠ΄ интСрСса. Π£ послСдњој Π΅Ρ‚Π°ΠΏΠΈ ReSyPIO ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡ˜Π΅, ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»Π½Π° структура, услови ΠΈ Ρ€Π΅ΠΆΠΈΠΌ Ρ€Π°Π΄Π° Ρ€Π΅Π°ΠΊΡ‚ΠΎΡ€Π° су ΠΎΠ΄Ρ€Π΅Ρ’Π΅Π½ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΎΠΌ Ρ€ΠΈΠ³ΠΎΡ€ΠΎΠ·Π½Π΅ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΡ˜Π΅. Π‘Π²Π΅ Ρ‚Ρ€ΠΈ Π΅Ρ‚Π°ΠΏΠ΅ ReSyPIO ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡ˜Π΅ ΠΈΠΌΠ°Ρ˜Ρƒ ΠΏΠΎΠ²Ρ€Π°Ρ‚Π½ΠΈ Ρ‚ΠΎΠΊ, ΡˆΡ‚ΠΎ Π·Π½Π°Ρ‡ΠΈ Π΄Π° ΡƒΠΊΠΎΠ»ΠΈΠΊΠΎ Π°Π½Π°Π»ΠΈΠ·Π° Π²ΠΎΠ΄ΠΈ ΠΊΠ° Π½Π΅ΠΏΡ€Π°ΠΊΡ‚ΠΈΡ‡Π½ΠΈΠΌ, Π½Π΅Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»Π½ΠΈΠΌ ΠΈΠ»ΠΈ нССфикасним Ρ€Π΅ΡˆΠ΅ΡšΠΈΠΌΠ°, ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ˜Π° ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡ΠΊΠΎΠ³ ΠΌΠΎΠ΄Π΅Π»Π°, супСрструктурС ΠΈ/ΠΈΠ»ΠΈ ΠΌΠΎΠ΄ΡƒΠ»Π° јС ΠΌΠΎΠ³ΡƒΡ›Π°. Π¦ΠΈΡ™ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅ ReSyPIO ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡ˜Π΅ јС Π΄Π° сС ΠΊΠΎΠ½Ρ†Π΅ΠΏΡ‚ΡƒΠ°Π»Π½ΠΈΠΌ ΠΈ Π½ΡƒΠΌΠ΅Ρ€ΠΈΡ‡ΠΊΠΈΠΌ приступом Π΄ΠΎΡ’Π΅ Π΄ΠΎ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»Π½Π΅ ΠΏΡ€Π΅ΠΏΠΎΡ€ΡƒΠΊΠ΅ Π·Π° структуру Ρ€Π΅Π°ΠΊΡ‚ΠΎΡ€Π°, ΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½Π΅ условС ΠΈ Ρ€Π΅ΠΆΠΈΠΌ Ρ€Π°Π΄Π°, која Π±ΠΈ Π±ΠΈΠ»Π° ΠΏΠΎΡ‡Π΅Ρ‚Π½Π° прСтпоставка Ρƒ Π±ΡƒΠ΄ΡƒΡ›Π΅ΠΌ Π΄ΠΈΠ·Π°Ρ˜Π½Ρƒ ΡƒΡ€Π΅Ρ’Π°Ρ˜Π°. ΠŸΡ€Π΅Π³Π»Π΅Π΄ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ дајС опис ΠΈ ΠΏΡ€ΠΈΠΊΠ°Π· свих ΠΈΡΡ‚Ρ€Π°ΠΆΠΈΠ²Π°ΡšΠ° ΠΎΠ΄ интСрСса, ΠΈΠ· области Π˜Π½Ρ‚Π΅Π½Π·ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ˜Π΅ процСса ΠΈ Π’Π΅ΠΎΡ€ΠΈΡ˜Π΅ ΠΈ Π°Π½Π°Π»ΠΈΠ·Π΅ процСсних систСма. НаглашСни су Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΈ приступи ΠΈ ΡΡ‚ΡƒΠ΄ΠΈΡ˜Π΅ присутнС Ρƒ ΠΈΡΡ‚Ρ€Π°ΠΆΠΈΠ²Π°Ρ‡ΠΊΠΎΡ˜Π·Π°Ρ˜Π΅Π΄Π½ΠΈΡ†ΠΈ, Π° ΡšΠΈΡ…ΠΎΠ²ΠΈ Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚ΠΈ ΡƒΠΏΠΎΡ€Π΅Ρ’Π΅Π½ΠΈ са прСдстављСном ReSyPIO ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡ˜ΠΎΠΌ са Π°ΠΊΡ†Π΅Π½Ρ‚ΠΎΠΌ Π½Π° прСдностима ΠΈ Π½Π°ΡƒΡ‡Π½ΠΎΠΌ доприносу. Π£ ΠΎΠ²ΠΎΠΌ ΠΏΠΎΠ³Π»Π°Π²Ρ™Ρƒ јС Π΄Π°Ρ‚ ΠΈ Π½ΠΈΠ· Π΄ΠΎΠ±Ρ€ΠΎ истраТСних Π°Π½Π°Π»ΠΈΡ‚ΠΈΡ‡ΠΊΠΈΡ… ΠΈ Π½ΡƒΠΌΠ΅Ρ€ΠΈΡ‡ΠΊΠΈΡ… приступа који Π±ΠΈ ΠΌΠΎΠ³Π»ΠΈ Π΄Π° Π±ΡƒΠ΄Ρƒ ΠΊΠΎΡ€ΠΈΡˆΡ›Π΅Π½ΠΈ Ρƒ ΠΎΠΊΠ²ΠΈΡ€Ρƒ ReSyPIO ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡ˜Π΅ ΠΈ ΠΎΠ»Π°ΠΊΡˆΠ°Ρ˜Ρƒ ΡšΠ΅Π½Ρƒ ΠΏΡ€ΠΈΠΌΠ΅Π½Ρƒ. Π£ ΠΏΠΎΠ³Π»Π°Π²Ρ™Ρƒ Опис ReSyPIO ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡ˜Π΅, јС Π΄Π΅Ρ‚Π°Ρ™Π½ΠΎ објашњСна синтСза Ρ€Π΅Π°ΠΊΡ‚ΠΎΡ€Π° заснована Π½Π° ΠΊΠΎΠ½Ρ†Π΅ΠΏΡ‚ΠΈΠΌΠ° ΠΈΠ½Ρ‚Π΅Π½Π·ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ˜Π΅ процСса ΠΈ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΡ˜ΠΈ супСрструктурС. ΠŸΡ€Π²ΠΎ јС Π΄Π°Ρ‚Π° ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Π° Π·Π° Π³Ρ€Π°Ρ„ΠΈΡ‡ΠΊΡƒ ΠΈ ΠΊΠΎΠ½Ρ†Π΅ΠΏΡ‚ΡƒΠ°Π»Π½Ρƒ Ρ€Π΅ΠΏΡ€Π΅Π·Π΅Π½Ρ‚Π°Ρ†ΠΈΡ˜Ρƒ систСма, ΠΏΡ€Π΅ΠΊΠΎ Π³Π»Π°Π²Π½ΠΈΡ… Π³Ρ€Π°Π΄ΠΈΠ²Π½ΠΈΡ… Ρ˜Π΅Π΄ΠΈΠ½ΠΈΡ†Π°, Ρ„Π΅Π½ΠΎΠΌΠ΅Π½ΠΎΠ»ΠΎΡˆΠΊΠΈΡ… ΠΌΠΎΠ΄ΡƒΠ»Π°. ΠŸΠΎΡ‚ΠΎΠΌ јС објашњСно ΠΊΠ°ΠΊΠΎ сС ΠΊΡ€Π΅ΠΈΡ€Π° супСрструктура Ρ€Π΅Π°ΠΊΡ‚ΠΎΡ€Π°. На ΠΊΡ€Π°Ρ˜Ρƒ јС Π΄Π°Ρ‚ ΡƒΠΎΠΏΡˆΡ‚Π΅Π½ поступак Π·Π° ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡ΠΊΠΈ опис супСрструктурС ΠΏΡ€Π΅ΠΊΠΎ скупова Ρ˜Π΅Π΄Π½Π°Ρ‡ΠΈΠ½Π° ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΡ˜Π°Π»Π½ΠΎΠ³ ΠΈ СнСргСтског биланса, Ρ‡ΠΈΡ˜ΠΈ Π±Ρ€ΠΎΡ˜ зависи ΠΎΠ΄ Π±Ρ€ΠΎΡ˜Π° присутних Ρ„Π°Π·Π° ΠΈ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Π°Ρ‚Π° Ρƒ систСму. ReSyPIO ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡ˜Π° јС ΠΏΡ€Π²ΠΈ ΠΏΡƒΡ‚ ΠΏΡ€ΠΈΠΌΠ΅ΡšΠ΅Π½Π° Π½Π° ΡΠ»ΡƒΡ‡Π°Ρ˜Ρƒ Π΄Π²Π΅ Π³Π΅Π½Π΅Ρ€ΠΈΡ‡ΠΊΠ΅ ΠΏΠ°Ρ€Π°Π»Π΅Π»Π½Π΅ Ρ€Π΅Π°ΠΊΡ†ΠΈΡ˜Π΅ Ρƒ ΠΏΠΎΠ³Π»Π°Π²Ρ™Ρƒ ΠΏΠΎΠ΄ Π½Π°Π·ΠΈΠ²ΠΎΠΌ ΠŸΡ€ΠΈΠΌΠ΅Π½Π° ReSyPIO ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡ˜Π΅ Π½Π° ΡΠ»ΡƒΡ‡Π°Ρ˜Ρƒ Π³Π΅Π½Π΅Ρ€ΠΈΡ‡ΠΊΠ΅ Ρ€Π΅Π°ΠΊΡ†ΠΈΡ˜Π΅. Овај ΡΠ»ΡƒΡ‡Π°Ρ˜ ΠΎΠ΄Π³ΠΎΠ²Π°Ρ€Π° Ρ€Π΅Π°ΠΊΡ†ΠΈΡ˜Π°ΠΌΠ° којС сС ΠΌΠΎΠ³Ρƒ Π½Π°Ρ›ΠΈ Ρƒ ΠΈΠ½Π΄ΡƒΡΡ‚Ρ€ΠΈΡ˜ΠΈ Ρ„ΠΈΠ½ΠΈΡ… Ρ…Π΅ΠΌΠΈΠΊΠ°Π»ΠΈΡ˜Π°. Π Π΅Π°ΠΊΡ†ΠΈΡ˜Π΅ су Π΅Π½Π΄ΠΎΡ‚Π΅Ρ€ΠΌΠ½Π΅ ΠΈ спорС, ΠΏΡ€ΠΈ Ρ‡Π΅ΠΌΡƒ јС ΠΊΠΈΠ½Π΅Ρ‚ΠΈΡ‡ΠΊΠΈ Ρ„Π°Π²ΠΎΡ€ΠΈΠ·ΠΎΠ²Π°Π½ΠΎ ΠΊΡ€Π΅ΠΈΡ€Π°ΡšΠ΅ Π½Π΅ΠΆΠ΅Ρ™Π΅Π½ΠΎΠ³ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π°. Након ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅ ReSyPIO ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡ˜Π΅, добијСна јС ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»Π½Π° структура Ρ€Π΅Π°ΠΊΡ‚ΠΎΡ€Π° која сС ΡΠ°ΡΡ‚ΠΎΡ˜ΠΈ ΠΎΠ΄ сСгмСнтисаног ΠΌΠΎΠ΄ΡƒΠ»Π° са 17 ΡƒΠ»Π°Π·Π° Π·Π° ΠΈΠ·Π²ΠΎΡ€ Ρ‚ΠΎΠΏΠ»ΠΎΡ‚Π΅ ΠΈ Ρ€Π΅Π°ΠΊΡ‚Π°Π½Ρ‚ који сС Π΄ΠΎΠ·ΠΈΡ€Π°. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΎ јС Π΄Π° Ρ€Π΅Π°ΠΊΡ‚ΠΎΡ€ Ρ€Π°Π΄ΠΈ ΠΊΠΎΠ½Ρ‚ΠΈΠ½ΡƒΠ°Π»Π½ΠΎ, Ρƒ стационарном Ρ€Π΅ΠΆΠΈΠΌΡƒ Ρ€Π°Π΄Π°, Ρ˜Π΅Ρ€ Π±ΠΈ Π΄ΠΈΠ½Π°ΠΌΠΈΡ‡ΠΊΠΈ Ρ€Π΅ΠΆΠΈΠΌ Ρ€Π°Π΄Π° Ρ€Π΅Π·ΡƒΠ»Ρ‚ΠΎΠ²Π°ΠΎ Π½Π΅Π΄ΠΎΠ²ΠΎΡ™Π½ΠΈΠΌ ΠΏΠΎΠ²Π΅Ρ›Π°ΡšΠ΅ΠΌ Сфикасности Ρ€Π΅Π°ΠΊΡ‚ΠΎΡ€Π°..
    corecore