83 research outputs found

    Automatic Pancreas Segmentation and 3D Reconstruction for Morphological Feature Extraction in Medical Image Analysis

    Get PDF
    The development of highly accurate, quantitative automatic medical image segmentation techniques, in comparison to manual techniques, remains a constant challenge for medical image analysis. In particular, segmenting the pancreas from an abdominal scan presents additional difficulties: this particular organ has very high anatomical variability, and a full inspection is problematic due to the location of the pancreas behind the stomach. Therefore, accurate, automatic pancreas segmentation can consequently yield quantitative morphological measures such as volume and curvature, supporting biomedical research to establish the severity and progression of a condition, such as type 2 diabetes mellitus. Furthermore, it can also guide subject stratification after diagnosis or before clinical trials, and help shed additional light on detecting early signs of pancreatic cancer. This PhD thesis delivers a novel approach for automatic, accurate quantitative pancreas segmentation in mostly but not exclusively Magnetic Resonance Imaging (MRI), by harnessing the advantages of machine learning and classical image processing in computer vision. The proposed approach is evaluated on two MRI datasets containing 216 and 132 image volumes, achieving a mean Dice similarity coefficient (DSC) of 84:1 4:6% and 85:7 2:3% respectively. In order to demonstrate the universality of the approach, a dataset containing 82 Computer Tomography (CT) image volumes is also evaluated and achieves mean DSC of 83:1 5:3%. The proposed approach delivers a contribution to computer science (computer vision) in medical image analysis, reporting better quantitative pancreas segmentation results in comparison to other state-of-the-art techniques, and also captures detailed pancreas boundaries as verified by two independent experts in radiology and radiography. The contributions’ impact can support the usage of computational methods in biomedical research with a clinical translation; for example, the pancreas volume provides a prognostic biomarker about the severity of type 2 diabetes mellitus. Furthermore, a generalisation of the proposed segmentation approach successfully extends to other anatomical structures, including the kidneys, liver and iliopsoas muscles using different MRI sequences. Thus, the proposed approach can incorporate into the development of a computational tool to support radiological interpretations of MRI scans obtained using different sequences by providing a “second opinion”, help reduce possible misdiagnosis, and consequently, provide enhanced guidance towards targeted treatment planning

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Reconstruction Methods for Free-Breathing Dynamic Contrast-Enhanced MRI

    Full text link
    Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) is a valuable diagnostic tool due to the combination of anatomical and physiological information it provides. However, the sequential sampling of MRI presents an inherent tradeoff between spatial and temporal resolution. Compressed Sensing (CS) methods have been applied to undersampled MRI to reconstruct full-resolution images at sub-Nyquist sampling rates. In exchange for shorter data acquisition times, CS-MRI requires more computationally intensive iterative reconstruction methods. We present several model-based image reconstruction (MBIR) methods to improve the spatial and temporal resolution of MR images and/or the computational time for multi-coil MRI reconstruction. We propose efficient variable splitting (VS) methods for support-constrained MRI reconstruction, image reconstruction and denoising with non-circulant boundary conditions, and improved temporal regularization for breast DCE-MRI. These proposed VS algorithms decouple the system model and sparsity terms of the convex optimization problem. By leveraging matrix structures in the system model and sparsifying operator, we perform alternating minimization over a list of auxiliary variables, each of which can be performed efficiently. We demonstrate the computational benefits of our proposed VS algorithms compared to similar proposed methods. We also demonstrate convergence guarantees for two proposed methods, ADMM-tridiag and ADMM-FP-tridiag. With simulation experiments, we demonstrate lower error in spatial and temporal dimensions for these VS methods compared to other object models. We also propose a method for indirect motion compensation in 5D liver DCE-MRI. 5D MRI separates temporal changes due to contrast from anatomical changes due to respiratory motion into two distinct dimensions. This work applies a pre-computed motion model to perform motion-compensated regularization across the respiratory dimension and improve the conditioning of this highly sparse 5D reconstruction problem. We demonstrate a proof of concept using a digital phantom with contrast and respiratory changes, and we show preliminary results for motion model-informed regularization on in vivo patient data.PHDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/138498/1/mtle_1.pd

    Image Processing and Analysis for Preclinical and Clinical Applications

    Get PDF
    Radiomics is one of the most successful branches of research in the field of image processing and analysis, as it provides valuable quantitative information for the personalized medicine. It has the potential to discover features of the disease that cannot be appreciated with the naked eye in both preclinical and clinical studies. In general, all quantitative approaches based on biomedical images, such as positron emission tomography (PET), computed tomography (CT) and magnetic resonance imaging (MRI), have a positive clinical impact in the detection of biological processes and diseases as well as in predicting response to treatment. This Special Issue, “Image Processing and Analysis for Preclinical and Clinical Applications”, addresses some gaps in this field to improve the quality of research in the clinical and preclinical environment. It consists of fourteen peer-reviewed papers covering a range of topics and applications related to biomedical image processing and analysis
    • …
    corecore