482 research outputs found

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    Lightning search algorithm: a comprehensive survey

    Full text link
    The lightning search algorithm (LSA) is a novel meta-heuristic optimization method, which is proposed in 2015 to solve constraint optimization problems. This paper presents a comprehensive survey of the applications, variants, and results of the so-called LSA. In LSA, the best-obtained solution is defined to improve the effectiveness of the fitness function through the optimization process by finding the minimum or maximum costs to solve a specific problem. Meta-heuristics have grown the focus of researches in the optimization domain, because of the foundation of decision-making and assessment in addressing various optimization problems. A review of LSA variants is displayed in this paper, such as the basic, binary, modification, hybridization, improved, and others. Moreover, the classes of the LSA’s applications include the benchmark functions, machine learning applications, network applications, engineering applications, and others. Finally, the results of the LSA is compared with other optimization algorithms published in the literature. Presenting a survey and reviewing the LSA applications is the chief aim of this survey paper

    Predicting and Recovering Link Failure Localization Using Competitive Swarm Optimization for DSR Protocol in MANET

    Get PDF
    Portable impromptu organization is a self-putting together, major construction-less, independent remote versatile hub that exists without even a trace of a determined base station or government association. MANET requires no extraordinary foundation as the organization is unique. Multicasting is an urgent issue in correspondence organizations. Multicast is one of the effective methods in MANET. In multicasting, information parcels from one hub are communicated to a bunch of recipient hubs all at once, at a similar time. In this research work, Failure Node Detection and Efficient Node Localization in a MANET situation are proposed. Localization in MANET is a main area that attracts significant research interest. Localization is a method to determine the nodes’ location in the communication network. A novel routing algorithm, which is used for Predicting and Recovering Link Failure Localization using a Genetic Algorithm with Competitive Swarm Optimization (PRLFL-GACSO) Algorithm is proposed in this study to calculate and recover link failure in MANET. The process of link failure detection is accomplished using mathematical modelling of the genetic algorithm and the routing is attained using the Competitive Swarm optimization technique. The result proposed MANET method makes use of the CSO algorithm, which facilitates a well-organized packet transfer from the source node to the destination node and enhances DSR routing performance. Based on node movement, link value, and endwise delay, the optimal route is found. The main benefit of the PRLFL-GACSO Algorithm is it achieves multiple optimal solutions over global information. Further, premature convergence is avoided using Competitive Swarm Optimization (CSO). The suggested work is measured based on the Ns simulator. The presentation metrix are PDR, endwise delay, power consumption, hit ratio, etc. The presentation of the proposed method is almost 4% and 5% greater than the present TEA-MDRP, RSTA-AOMDV, and RMQS-ua methods. After, the suggested method attains greater performance for detecting and recovering link failure. In future work, the hybrid multiway routing protocols are presented to provide link failure and route breakages and liability tolerance at the time of node failure, and it also increases the worth of service aspects, respectively

    A Survey on Energy Optimization Techniques in UAV-Based Cellular Networks: From Conventional to Machine Learning Approaches

    Get PDF
    Wireless communication networks have been witnessing an unprecedented demand due to the increasing number of connected devices and emerging bandwidth-hungry applications. Albeit many competent technologies for capacity enhancement purposes, such as millimeter wave communications and network densification, there is still room and need for further capacity enhancement in wireless communication networks, especially for the cases of unusual people gatherings, such as sport competitions, musical concerts, etc. Unmanned aerial vehicles (UAVs) have been identified as one of the promising options to enhance the capacity due to their easy implementation, pop up fashion operation, and cost-effective nature. The main idea is to deploy base stations on UAVs and operate them as flying base stations, thereby bringing additional capacity to where it is needed. However, because the UAVs mostly have limited energy storage, their energy consumption must be optimized to increase flight time. In this survey, we investigate different energy optimization techniques with a top-level classification in terms of the optimization algorithm employed; conventional and machine learning (ML). Such classification helps understand the state of the art and the current trend in terms of methodology. In this regard, various optimization techniques are identified from the related literature, and they are presented under the above mentioned classes of employed optimization methods. In addition, for the purpose of completeness, we include a brief tutorial on the optimization methods and power supply and charging mechanisms of UAVs. Moreover, novel concepts, such as reflective intelligent surfaces and landing spot optimization, are also covered to capture the latest trend in the literature.Comment: 41 pages, 5 Figures, 6 Tables. Submitted to Open Journal of Communications Society (OJ-COMS

    Applied (Meta)-Heuristic in Intelligent Systems

    Get PDF
    Engineering and business problems are becoming increasingly difficult to solve due to the new economics triggered by big data, artificial intelligence, and the internet of things. Exact algorithms and heuristics are insufficient for solving such large and unstructured problems; instead, metaheuristic algorithms have emerged as the prevailing methods. A generic metaheuristic framework guides the course of search trajectories beyond local optimality, thus overcoming the limitations of traditional computation methods. The application of modern metaheuristics ranges from unmanned aerial and ground surface vehicles, unmanned factories, resource-constrained production, and humanoids to green logistics, renewable energy, circular economy, agricultural technology, environmental protection, finance technology, and the entertainment industry. This Special Issue presents high-quality papers proposing modern metaheuristics in intelligent systems

    Hybridization of Energy Optimization Technique for Cluster Based Routing using Various Computational Intelligence Methods in WSN

    Get PDF
    Approaches in WSN technology has determined by opportunity of tiny and inexpensive sensor nodes with adequacy of sensing multiple kinds of information processing and wireless communication. Network lifetime and energy efficiency are major indexes of WSN. Several clustering techniques are intended to extend the network lifetime but whereas there is an issue of incompetent Cluster Head (CH) election. To overcome this issue, an Integration of Novel Memetic and Brain Storm Optimization approach with Levy Distribution (IoNM-BSOLyD) has been proposed for clustering using fitness function. In the meanwhile, election of CH is done by utilizing fitness function, which incorporates following amplitude such as energy, distance to adjacent nodes, distance to BS, and network load. After clustering, routing techniques decides the detecting and pursuing the route in WSN. In this proposed work, a Water Wave Optimization with Hill Climbing technique (WWO-HCg) is introduced for routing purpose. This proposed methodology deals with ternary QoS aspect such as network delay, energy consumption, packet delivery ratio, network lifetime and security to select optimal path and enhance QoS as well. This proposed protocol provides better performance result than other contemporary protocols

    Monte Carlo Method with Heuristic Adjustment for Irregularly Shaped Food Product Volume Measurement

    Get PDF
    Volume measurement plays an important role in the production and processing of food products. Various methods have been proposed to measure the volume of food products with irregular shapes based on 3D reconstruction. However, 3D reconstruction comes with a high-priced computational cost. Furthermore, some of the volume measurement methods based on 3D reconstruction have a low accuracy. Another method for measuring volume of objects uses Monte Carlo method. Monte Carlo method performs volume measurements using random points. Monte Carlo method only requires information regarding whether random points fall inside or outside an object and does not require a 3D reconstruction. This paper proposes volume measurement using a computer vision system for irregularly shaped food products without 3D reconstruction based on Monte Carlo method with heuristic adjustment. Five images of food product were captured using five cameras and processed to produce binary images. Monte Carlo integration with heuristic adjustment was performed to measure the volume based on the information extracted from binary images. The experimental results show that the proposed method provided high accuracy and precision compared to the water displacement method. In addition, the proposed method is more accurate and faster than the space carving method

    Hybrid multi-objective evolutionary algorithms based on decomposition for wireless sensor network coverage optimization

    Get PDF
    In Wireless Sensor Networks (WSN), maintaining a high coverage and extending the network lifetime are two conflicting crucial issues considered by real world service providers. In this paper, we consider the coverage optimization problem in WSN with three objectives to strike the balance between network life-time and coverage. These include minimizing the energy consumption, maximizing the coverage rate and maximizing the equilibrium of energy consumption. Two improved hybrid multi-objective evolutionary algorithms, namely Hybrid-MOEA/D-I and Hybrid-MOEA/D-II, have been proposed. Based on the well-known multi-objective evolutionary algorithm based on decomposition (MOEA/D), Hybrid-MOEA/D-Ihybrids a genetic algorithm and a differential evolutionary algorithm to effectively optimize sub-problems of the multi-objective optimization problem in WSN. By integrating a discrete particle swarm algorithm, we further enhance solutions generated by Hybrid-MOEA/D-I in a new Hybrid-MOEA/D-II algorithm. Simulation results show that the proposed Hybrid-MOEA/D-I and Hybrid-MOEA/D-II algorithms have a significant better performance compared with existing algorithms in the literature in terms of all the objectives concerned

    Reliable cost-optimal deployment of wireless sensor networks

    Get PDF
    Wireless Sensor Networks (WSNs) technology is currently considered one of the key technologies for realizing the Internet of Things (IoT). Many of the important WSNs applications are critical in nature such that the failure of the WSN to carry out its required tasks can have serious detrimental effects. Consequently, guaranteeing that the WSN functions satisfactorily during its intended mission time, i.e. the WSN is reliable, is one of the fundamental requirements of the network deployment strategy. Achieving this requirement at a minimum deployment cost is particularly important for critical applications in which deployed SNs are equipped with expensive hardware. However, WSN reliability, defined in the traditional sense, especially in conjunction with minimizing the deployment cost, has not been considered as a deployment requirement in existing WSN deployment algorithms to the best of our knowledge. Addressing this major limitation is the central focus of this dissertation. We define the reliable cost-optimal WSN deployment as the one that has minimum deployment cost with a reliability level that meets or exceeds a minimum level specified by the targeted application. We coin the problem of finding such deployments, for a given set of application-specific parameters, the Minimum-Cost Reliability-Constrained Sensor Node Deployment Problem (MCRC-SDP). To accomplish the aim of the dissertation, we propose a novel WSN reliability metric which adopts a more accurate SN model than the model used in the existing metrics. The proposed reliability metric is used to formulate the MCRC-SDP as a constrained combinatorial optimization problem which we prove to be NP-Complete. Two heuristic WSN deployment optimization algorithms are then developed to find high quality solutions for the MCRC-SDP. Finally, we investigate the practical realization of the techniques that we developed as solutions of the MCRC-SDP. For this purpose, we discuss why existing WSN Topology Control Protocols (TCPs) are not suitable for managing such reliable cost-optimal deployments. Accordingly, we propose a practical TCP that is suitable for managing the sleep/active cycles of the redundant SNs in such deployments. Experimental results suggest that the proposed TCP\u27s overhead and network Time To Repair (TTR) are relatively low which demonstrates the applicability of our proposed deployment solution in practice
    corecore